
Scalable Socket Buffer Tuning for High-Performance Web Servers

Paper No. 122
Total Number of Pages: 23

Abstract

Although many research efforts have been devoted to the
network congestion against an increase of the Internet
traffic, only a few discussions are recently made on the
performance improvement of the endhosts. In this paper,
we propose a new architecture, which is called Scalable
Socket Buffer Tuning (SSBT), to provide high perfor-
mance and fair service for many TCP connections at the
Internet endhosts. SSBT has two major features. The
one is to reduce the number of memory accesses at the
sender host by using some of new system calls, which is
called Simple Memory-copy Reduction (SMR) scheme.
The other is the Equation-based Automatic TCP Buffer
Tuning (E-ATBT), where the sender host estimates ‘ex-
pected’ throughput of the TCP connections through a
simple mathematical equation, and assigns the send socket
buffer to them according to the estimated throughput. If
the socket buffer is short, the max-min fairness policy is
used.

We confirm an effectiveness of our proposed algo-
rithm through both of a simulation technique and an ex-
perimental system. From the experimental results, we
have found that our SSBT can achieve up to 30% gain
of the Web server throughput, and the fair and effective
usage of the sender socket buffer can be achieved.

Keywords: TCP (Transmission Control Protocol),
Socket Buffer, Fairness, Buffer Tuning, Scalability

1 Introduction

With a rapid growth of the Internet users, many research
efforts have been made in order to avoid and dissolve
the network congestion against an increase of network
traffic. However, only a few discussions are recently
made on the performance improvement of the Internet
endhosts in spite of the projection that the bottleneck is
now being shifted from the network to endhosts. For
example, busy WWW (World Wide Web) servers in the
current Internet receive hundreds of requests for docu-
ment transfer every second at peak time.

Of course, an improvement of protocol processing
on the endhosts is not a new subject. An early exam-
ple can be found in [1] where the authors propose the
‘fbuf’ (fast buffer) architecture, which shares the mem-
ory space between the system kernel and the user pro-
cess to avoid redundant memory copies during data ex-
changes. It is based on an observation that memory copy
is a main cause of the bottleneck at endhosts in TCP
data transfer. Other approaches can be found in, e.g., [2,
3]. However, past researches including the above ap-
proaches do not consider the ‘fair’ treatment of connec-
tions, by which connections receive fair service from the
server. By fair service, we can also expect performance
improvement by the following reasons. Suppose that a
server host is sending TCP data to two clients of 64Kbps
dial-up (say, client A) and 100Mbps LAN (client B). If
the server host assigns an equal size of the send socket
buffer to both clients, it is likely that an amount of the as-
signed buffer is too large for client A, and too small for
client B, because of the difference of capacities (more
strictly, bandwidth-delay products) of two connections.
For an effective buffer usage for both clients, a compro-
mise on buffer usage should be taken into account.

Another important example that requires ‘fair’ buffer
treatment can be found in a busy Internet WWW server,
which accepts a large number of TCP connections with
different bandwidths and round trip times (RTTs) at the
same time. In [4], the authors have proposed a buffer
tuning algorithm called Automatic TCP Buffer Tuning
(referred to as ATBT in this paper), which dynamically
adjusts the send socketbuffer size accordingto the change
of the TCP sending window size of the connection. How-
ever, it cannot provide ‘fairness’ among connections be-
cause the throughput of TCP connections is not propor-
tional to the sending window size [5]. We will provide
more discussions on the problems of ATBT in the next
section.

In this paper, we propose a novel architecture, called
Scalable Socket Buffer Tuning (SSBT), to provide high
performance and fair service for many TCP connections
at the sender host. For this purpose, we develop the

1

following two mechanisms in SSBT. Those are SMR
(Simple Memory-copy Reduction scheme) and E-ATBT
(Equation-based Automatic TCP Buffer Tuning). The
SMR scheme provides a set of socket system calls in
order to reduce the number of memory copy operations
at the sender host in TCP data transfer. It is a simple
mechanism, compared with the other so-called ‘zero-
copy’ mechanisms such as the fbuf architecture, but it
can achieve the same effect in reducing the overhead
at the sender host. Our main contribution in this pa-
per is E-ATBT, which provides a fair assignment of the
socket buffer. In E-ATBT, we use ‘expected’ throughput
of TCP connections by an analytic approach. It is char-
acterized by packet loss rate, RTT and RTO (Retrans-
mission Time Out) values of the connections, which can
easily be monitored by the sender host. The send socket
buffer is then assigned to each connection based on its
expected throughput, with consideration on a max-min
fairness among connections.

We validate an effectiveness of our proposed mecha-
nism through both of simulation and implementation ex-
periments. In the simulation experiments, we confirm
the fair assignment of the socket buffer by using our E-
ATBT algorithm under various network situations. In the
implementation experiments, we confirm the behavior of
the SSBT at the transport-layer, that is, we use the native
TCP data transfer in the experiments. We show the effec-
tiveness of SSBT in terms of overall server performance,
the number of accommodated connections, and fairness
among connections.

We last note that the fairness is recently paid much
attention in the various aspects. See, e.g., [6, 7, 8] for
TCP enhancements and [9, 10, 11] for router support in
order to achieve the fairness. Perhaps, all of the above
technologies including our proposed method for endhosts
are necessary to provide the end–to–end fairness to the
users.

This paper is organized as follows. In Section 2, we
first introduce the ATBT algorithm briefly for reference
purpose. In Section 3, we propose our SSBT algorithm.
We evaluate the effectiveness of our proposed algorithm
through simulation experiments in Section 4, followed
by implementation experiments in Section 5. Finally, we
present some concluding remarks in Section 6.

2 Related Work; Automatic TCP Buffer
Tuning (ATBT)

For the sender host, to provide the fairness among mul-
tiple TCP connections, its send socket buffer must be as-
signed to the connections by taking care of differences of
connections’ characteristics. In this section, we first in-
troduce a related research on the buffer tuning, and point
out several problems.

In [4], the authors have proposed an Automatic TCP
Buffer Tuning (ATBT) mechanism, where the assigned
buffer size of each TCP connection is determined ac-
cording to the current window size of the connection.
That is, when the window size becomes large, the sender
host tries to assign more buffer to the connection. It de-
creases the assigned buffer size as the window size be-
comes small. When the total required buffer size of all
TCP connections becomes larger than the send socket
buffer size prepared at the sender host, the send socket
buffer is assigned to each connectionaccording to a max-
min fairness policy. More specifically, the sender host
first assigns the buffer equally to all TCP connections.
If some connections do not require large buffer, the ex-
cess buffer is re-assigned to connections requiring larger
buffer. Through this mechanism, it is expected to pro-
vide dynamic and fair buffer assignment by considering
differences of TCP connections.

However, ATBT has several problems. It assigns the
send socket buffer to each TCP connection according to
its current window size at regular intervals. Therefore,
when the sender TCP decreases its window size sud-
denly due to, e.g., an occasional packet loss, the assigned
buffer size sometimes gets smaller than that the connec-
tion actually requires. It might be resolved by setting
the update interval to a smaller value. In that case, how-
ever, the assigned buffer size is changed too frequently,
which causes the system instability. Furthermore, as the
network bandwidth becomes larger, the oscillation of the
window size also becomes large, leading to a large oscil-
lation of the assigned buffer size.

Another problem exists in the max-min sharing pol-
icy adopted in ATBT. Suppose that three TCP connec-
tions (connections 1, 2 and 3) are active, and the required
buffer sizes calculated from the window sizes of connec-
tions are 20 [KBytes], 200 [KBytes], and 800 [KBytes],
respectively. If the total size of the send socket buffer is
300 [KBytes], the sender host first assigns 100 [KBytes]
to each connection. Since connection 1 does not re-
quire such a large buffer, the sender re-assigns the excess
buffer of 80 [KBytes] of connection 1 equally to connec-

2

tions 2 and 3. As a result, the assigned buffer sizes of
both connections 2 and 3 become 140 [KBytes]. How-
ever, it must be better to assign the excess buffer pro-
portionally to the required buffer size of connections 2
and 3. In this case, the assigned buffers become 116 [KBytes]
for connection 2 and 164 [KBytes] for connection 3 by a
proportional re-assignment. This assignment is more ef-
fective because the throughput improvement of connec-
tion 3 becomes larger. The remaining problem is how
to estimate the buffer size each TCP connection actually
requires. ATBT cannot re-assign the excess buffer pro-
portionally because it determines the buffer size only by
the current window size of the connection.

3 Scalable Socket Buffer Tuning (SSBT)

Our proposed method called a “Scalable Socket Buffer
Tuning” (SSBT) includes the following two mechanisms;
the Equation-based Automatic TCP Buffer Tuning (E-
ATBT) and the Simple Memory-copy Reduction (SMR)
scheme. We explain them in the following subsections.

3.1 Equation-based Automatic TCP Buffer Tun-
ing (E-ATBT)

The Equation-based Automatic TCP Buffer Tuning (E-
ATBT) solves the problems raised in Section 2. In E-
ATBT, the sender host estimates an ‘expected’ through-
put of each TCP connection by monitoring three param-
eters (packet loss probability, round trip time, and re-
transmit timeout values). It then determines the required
buffer size of the connection from the estimated through-
put, not from the current window size of TCP. The esti-
mation method of TCP throughput is based on the anal-
ysis result in [12]. In [12], the authors have derived the
average throughput of the TCP connection for the model
in which multiple connections with different input link
bandwidths share the bottleneck router employing the
RED algorithm [13]. The following parameters are used
to derive the throughput;

• p: packet dropping probability of the RED algo-
rithm

• rtt: the RTT value of the TCP connection

• rto: the RTO value of the TCP connection

In the analysis, the average window size of the TCP con-
nection is first calculated from the above three parame-
ters. The average throughput is then obtained by con-
sidering the performance degradation caused by TCP’s

retransmission timeout. The analysis developed in [12]
is easily applied to our case, by viewing the packet drop-
ping probability of the RED algorithm as the observed
packet loss rate.

The parameter set (p, rtt, and rto) is obtained at the
sender host as follows. Rtt and rto can be directly ob-
tained from the sender TCP. The packet loss rate p can
also be estimated from the number of successfully trans-
mitted packets and the number of lost packets detected
at the sender host via acknowledgement packets. A pos-
sible cause of the estimation error on p is a the stochas-
tic nature of the packet losses since the analysis in [12]
assumes the random packet loss. Thus, we need the val-
idation for the case where the packet losses occur at the
drop-tail router, since in that case, the packets tends to be
dropped in the bursty nature. We will present evaluation
results on this aspect in Section 4.

Note that an appropriateness of the estimationmethod
used in the E-ATBT algorithm has been validated in [12].
However, we can apply another estimation result of TCP
throughput given in [5] using an additional parameter of
Wmax, the buffer size of the receiver.

λ = max

(
Wmax

RTT
, (1)

1

RTT
√

2bp
3

+ T0 min(1, 3
√

3bp
8

)p(1 + 32p2)




where b is set to 2 if the receiver uses TCP’s Delayed
ACK option, and 1 if not.

We denote the estimated throughput of connection i
by ρi. From ρi, we simply determine Bi, the required
buffer size of connection i, as;

Bi = ρi × rtti

where rtti is RTT of connection i. By this mechanism,
it is expected to provide a stable assignment of the send
socket buffer to TCP connections, if the parameter set (p,
rtt, and rto) used in estimation is stable. In ATBT, on
the other hand, the assignment is inherently instable even
when three parameters are stable, since the window size
oscillates more significantly regardless of the stability of
parameters.

As in ATBT, our E-ATBT also adopts the max-min
fairness policy for re-assigning the excess buffer. Differ-
ently from the ATBT algorithm, however, E-ATBT em-
ploys the proportional re-assignment policy as explained
in the previous subsection. That is, when the excess
buffer is re-assigned to connections which need more

3

Data File Application
Buffer
Application
Buffer

Memory Copy
(File to
Application Buffer)

Socket System Call
(Copying data from
User space to Kernel
Space)

Socket System Call
(Copying data from
User space to Kernel
Space)

Call socket system call

Socket
Buffer

User Space

Kernel Space

Memory Copy
(Application Buffer to
Socket Buffer)

TCPTCP

(a) Original Mechanism

Data File

Socket System Call
(Copying data from
User space to Kernel
Space)

Socket System Call
(Copying data from
User space to Kernel
Space)

Memory Copy
(File to Socket Buffer)

Socket
Buffer

Call socket system call

TCPTCP

User Space

Kernel Space

(b) Proposed Mechanism of SMR scheme

Figure 1: Memory Copy Operations in TCP data Trans-
fer

buffer, the buffer is re-assigned to connections in propor-
tion to the required buffer size calculated from the analy-
sis. Note that ATBT re-assigns the excess buffer equally,
since it has no means to know the expected throughput
of the connections.

3.2 Simple Memory-copy Reduction (SMR) Scheme

Another mechanism we implement is a Simple Memory-
copy Reduction (SMR) scheme for further performance
improvement. In TCP data transfer, two memory-copy
operations are necessary at the sender host in TCP data
transfer [14]. One is from the file system to the applica-
tion buffer, and the other is from the application buffer to
the socket buffer, as shown in Figure 1(a). The problem
is that the memory access is the largest obstacle in im-
proving TCP data transfer [15], and reducing the number
of memory copy operations in TCP data transfer is a key
to improving the server’s protocol processing speed.

Reducing the number of memory accesses in TCP
data transfer is not a new issue. Such an example can
be found in [1, 2, 3]. In [1], the authors proposed the
‘fbuf’ (fast buffer) architecture, which shares the mem-
ory space between the system kernel and user processes

to avoid redundant memory copies during data transfers.
However, it is difficult to implement fbuf on actual sys-
tems, because its complicated architecture requires many
modifications in the memory management mechanism
of operating systems. In this paper, we propose a Sim-
ple Memory-copy Reduction (SMR) scheme. It is a new
and simpler mechanism that can avoid the memory copy
from the file system to the application buffer.

A detailed mechanism at the sender host in TCP data
transfer of the original BSD UNIX system is illustrated
in Figure 1(a). When the user application transfers a file
by using TCP, the file is first copied from the file sys-
tem (on disk or memory) to the application buffer located
in the user memory space by one memory copy opera-
tion. Then, the data in the application buffer is copied
to the socket buffer which is located in the kernel mem-
ory space. It is performed by a couple of system calls
provided by the socket interface. Two memory copy op-
erations are thus necessary. It is redundant, however,
to copy the file in the file system to the socket buffer
via the application buffer, and it can be directly copied
from the file system to the socket buffer in file transfer.
Of course, the memory space should be clearly divided
into the user and kernel spaces by the UNIX memory
management system, so that the kernel memory space
is protected from illegal accesses by user applications.
When we consider performance improvement of TCP
data transfer, however, we can avoid the memory copy
from the file system to the application buffer.

Figure 1(b) illustrates the proposed mechanism of
the TCP data transfer. In the proposed mechanism, a
transferring file in the file system is directly copied to
the socket buffer by new socket system calls. The socket
system calls of the original mechanism require the ap-
plication buffer as one of the arguments to copy the data
from the application buffer to the socket buffer. In the
proposed mechanism, on the contrary, the socket system
calls are modified to specify a file descriptor of a trans-
ferring file as an argument, by which a direct copy of
the data from the file system to the socket buffer can be
accomplished. Then, the redundant memory copy pro-
cedure can be avoided. In what follows, we explain new
socket system calls implemented in our proposed mecha-
nism. See Figure 2 for the flow chart of the socket system
call of the FreeBSD system.

We implemented the proposed mechanism by modi-
fying three system calls, and adding two new arguments
to the mbuf structure [16]. All system calls for TCP data
transfer call a sosend system call, in order to copy the
transferring data from the user memory space to the ker-

4

sendto sendit sosend TCP

UDP

ICMP

Figure 2: Flow Chart of Socket System Call

nel memory space and pass the data for further proto-
col processing. In the proposed mechanism, we change
one of the arguments of sosend from the application
buffer to the file descriptor, so that sosend can copy
the data directly from the file system to the socket buffer.
Furthermore, we modify sendto and sendit system
calls to handle the file descriptor according to the changes
of the sosend system call.

3.3 Transfer of Small Documents

In E-ATBT, the sender estimates the throughput of each
TCP connectionfrom observed parameters associated with
that connection. Therefore, if the size of transmitted
data is small, it is impossible to obtain the accurate and
reliable estimation. The similar discussion is also ap-
plied to the SMR scheme, where the effect of avoiding
a memory-copy operation is likely to be limited if the
transferring document size is small. One of the reasons is
that the connection set-up time (TCP’s three-way hand-
shake) is likely to dominate the document transfer time.

The above problem becomes an obstacle for our pro-
posed mechanism to be applied to Web servers since
Web documents are comparatively small. It is reported
in [17] that the average size of Web documents at several
Web servers is under 10 [KBytes]. More importantly,
the authors in [18] report that the Web document size
exhibits the heavy-tailed nature. It means that there ex-
ist very long documents with certain probabilities, but
at the same time small-sized documents exist with large
probability. Especially, if there are many connections
on the Web server which is requesting small documents,
the buffer assignment of the E-ATBT mechanism may
become unstable since the number of connections fluc-
tuates largely.

One possible way to overcome this problem is to ex-
clude connections requesting the small-sized documents
from the fair buffer assignment described above. By this
modification, the stable assignment of the buffer is ex-
pected to be achieved. However, it leads another diffi-
culty that the threshold value of the document size can-
not be determined a priori because the appropriate set-

ting of the threshold is dependent on access frequency of
the Web server, processing power of the Web server, the
network condition, and so on. Fortunately, the ‘persis-
tent connection’ mechanism recently proposed and adopted
in HTTP/1.1 can alleviate the above-mentioned problem.
In HTTP/1.1, the server preserves the status of the TCP
connection when it finishes the document transfer, and
re-uses the status when a new connection is established
on the same session. Then, E-ATBT is able to utilize
the status information for the effective buffer assignment
even when most of the connections request small docu-
ments.

4 Simulation Results of E-ATBT

In this section, we present simulation results of E-ATBT
using the network simulator ns [19]. For the SMR scheme,
we performed implementation experiments, which will
be reported in Section 5. For evaluating an effective-
ness of E-ATBT, we compare the following three algo-
rithms in order to validate the effectiveness of our pro-
posed mechanism.

EQ: All of active TCP connections are assigned an equal
size of the send socket buffer.

ATBT: The send socket buffer size is assigned accord-
ing to the automatic TCP buffer tuning algorithm
described in Section 2.

E-ATBT: The sender host assigns the send socket buffer
in accordance with the equation-based automatic
TCP buffer tuning algorithm described in Subsec-
tion 3.1.

In three algorithms, the buffer re-assignment is performed
every second.

In the simulationexperiment, we conducted two cases
for packet loss occurrence. In the first case, packet loss
takes place with a constant rate implicitly assuming that
the router is equipped with the RED algorithm. It means
that the packet loss takes place randomly with given prob-
ability. Such an assumption is validated by [5]. How-
ever, random packet dropping is a rather ideal case to
our E-ATBT since our method largely relies on an ad-
equate estimation of the packet loss rate in determining
the throughput of TCP connections. Hence, we also con-
sider the case of the drop-tail router where packet loss
occurs due to buffer overflow at the router. In this case,
we can never expect random packet losses, and they tend
to occur in a bursty fashion.

5

Sender Host

Receiver Hosts

Buffer Size:
B [packets]

Connection 1:
bw = 100 [Mbps]
p= p1

Connection 2:
bw = 100 [Mbps]
p= p2

Connection 7:
bw = 100 [Mbps]
p= p7

Connection 8:
bw = 100 [Mbps]
p= p8τ = 6 [msec]

Figure 3: Network Model for Simulation Experiment 1

4.1 Simulation Experiment 1: Constant Packet
Loss Rate Case

We first investigate the case where each TCP connection
experiences random packet losses withconstant rate. The
network model used in this simulation experiment is de-
picted in Figure 3. It consists of a sender host, and eight
receiver hosts (from receiver host 1 to receiver host 8),
which are connected by the link of 100 [Mbps] to the
sender host. The propagation delays between the sender
host and receiver hosts (denoted by τ) are equally set to
6 [msec]. We set the packet loss probability on each link
between the sender host and the receiver host i to pi. The
sender host has B [packets] of the socket buffer size in
total. Each of simulation experiments starts at time 0.
TCP connection i, which is established from the sender
host to the receiver host i, starts packet transmission at
time t = (i−1)×125 [sec]. All connections stop packet
transmission at t = 1000 [sec].

We first set the packet dropping probability pi’s as
p1 = 0.0001 and p2 = ... = p8 = 0.02. The socket buffer
size of the sender B is set to be 500 [packets]. Expected
throughput values obtained by the receiver hosts then be-
come about 95 [Mbps] for the receiver host i, and about
7 [Mbps] for the rest of receiver hosts. Figure 4 plots the
time-dependent behaviors of the assigned buffer size and
throughput value of connections obtained by three mech-
anisms; EQ, ATBT, and E-ATBT. In the figure, labels
“#1” – “#8” represent for connections 1 through 8. In the
EQ mechanism (Figures 4(a) and 4(d)), the throughput
of connection 1 is degraded during 200 < t < 500 [sec]
and 600 < t [sec] of the simulation time. The first degra-
dation occurs because the assigned buffer size of connec-
tion 1 is suddenly decreased at the time when the second
and third connections starts packet transmission. It re-

sults in temporal degradation of the throughput of con-
nection 1. At t = 600 [sec], the number of active con-
nections exceeds six. However, connection 1 requires
about 110 [packets] to achieve its estimated throughput
for p1 = 0.0001. If the active number of connections
exceeds six, its assigned buffer is below 110 [packets]
in the EQ mechanism. It is the reason why the through-
put of connection 1 is decreased. On the other hand, the
other connections only require about 10 [packets] of the
send socket buffer and therefore, those connections at-
tain the constant throughput even if the assigned buffer
size gets smaller.

In both of ATBT and E-ATBT cases, on the other
hand, the throughput of connection 1 can keep a high
value even when the number of connections becomes
large as shown in Figures 4(e) and 4(f). It is because
the send socket buffer is assigned appropriately, that is,
the connection 1 is assigned the larger buffer size than
other connections (see Figures 4(b) and 4(c)) even after
other connections join. When comparing ATBT and E-
ATBT mechanisms, E-ATBT can offer stable buffer as-
signment as shown in Figure 4(b). However, it can also
be observed by comparing Figures 4(e) and 4(f) that the
obtained throughput values of two cases are not differ-
ent.

We next decrease the totalbuffer size, B, to 100 [pack-
ets]. See Figure 5. In all of three mechanisms, the through-
put of connection 1 is degraded as the number of connec-
tions increases, but E-ATBT provides the highest through-
put to connection 1. E-ATBT estimates the required buffer
size for all connections, and assigns the small buffer to
connections 2 through 8 since those do not require the
large buffer due to its high packet loss rate. Then, the
excess buffer can be utilized by connection 1 so that con-
nection 1 can enjoy high throughput as shown in Fig-
ure 5(c). Further, the assigned buffer by E-ATBT is very
stable when comparing with the ATBT case. In ATBT,
connections 2 through 8 temporarily inflate their window
size according to the congestion algorithm of TCP, and
it results in the decrease of the assigned buffer size of
connection 1 (Figure 5(e)). It leads to throughput degra-
dation of connection 1 in ATBT.

For another experiment using the network model de-
picted in Figure 3, we set pi’s as follows; p1 = p2 = 0.02,
p3 = p4 = 0.01, p5 = p6 = 0.002, p7 = p8 = 0.001. That
is, four kinds of connections exist at the sender host.
We set the buffer size B to 200 [Kbytes], which is rel-
atively small compared with the total value of required
buffer sizes of 8 connections. Results are shown in Fig-
ure 6. Connections 7 and 8 start the packet transmis-

6

0
50

100
150
200
250
300
350
400
450
500

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2

#3

#4

#5

#6

#7

#8

(a) EQ: Assigned Buffer Size

0
50

100
150
200
250
300
350
400
450
500

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1#2-#8

(b) ATBT: Assigned Buffer Size

0
50

100
150
200
250
300
350
400
450
500

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2-#8

(c) E-ATBT: Assigned Buffer Size

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(d) EQ: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(e) ATBT: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(f) E-ATBT: Throughput

Figure 4: Result of Simulation Experiment 1: p1 = 0.0001, p2 = . . . = p8 = 0.02, B = 500 [packets]

0

20

40

60

80

100

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1
#2

#3
#4

#5

#6

#7
#8

(a) EQ: Assigned Buffer Size

0

20

40

60

80

100

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1#2-#8

(b) ATBT: Assigned Buffer Size

0

20

40

60

80

100

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2
#3
#4
#5
#6
#7
#8

(c) E-ATBT: Assigned Buffer Size

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(d) EQ: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(e) ATBT: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(f) E-ATBT: Throughput

Figure 5: Result of Simulation Experiment 1: p1 = 0.0001, p2 = . . . = p8 = 0.02, B = 100 [packets]

sion at 750 [sec] and 875 [sec], respectively. In the EQ mechanism, those connections receive as same through-

7

Sender Host

Receiver Hosts

Buffer Size:
B [packets]

1.5 [Mbps]
100 [msec]

1.5 [Mbps]
100 [msec]

1.5 [Mbps]
100 [msec]

155 [Mbps]
1 [msec]

155 [Mbps]
1 [msec]

155 [Mbps]
1 [msec]

10 [Mbps]
1 [msec]

10 [Mbps]
1 [msec]

10 [Mbps]
1 [msec]

Router1

Router2

Router3

Figure 7: Network Model for Simulation Experiment 2

put as connections 5 and 6 as shown in Figure 6(d), even
though connections 7 and 8 have lower packet loss rate
than connections 5 and 6. In ATBT, throughputs of con-
nections 7 and 8 are slightly higher than connections 5
and 6 (Figure 6(e)), but the buffer assignment has large
oscillation (Figure 6(b)). On the other hand, Figure 6(c)
shows that E-ATBT keeps stable buffer assignment. It
can also provide the highest throughput to connections 7
and 8 without throughput degradation of other connec-
tions (Figure 6(f)).

4.2 Simulation Experiment 2: Drop-tail Case

We next use the network model depicted in Figure 7 to
examine the case where the packet loss occurs by packet
buffer overflow at the network router. Differently from
the constant packet loss rate case in the previous sub-
section, the packet loss rate of each TCP connection os-
cillates, which may affect the behavior of the E-ATBT
mechanism.

The simulation model consists of a sender host, seven
receiver hosts, six routers, and links connecting routers
and sender/receiver hosts. Seven TCP connections are
established at the sender host (connections 1 through 7).
As shown in the figure, connection 1 occupies router 1,
connection 2 and 3 share router 2, and the rest of connec-
tions 4 through 7 share router 3. The capacities of links
between routers are identically set to be 1.5 [Mbps], and
those of links between routers and the sender host, and
between the routers and the receiver hosts are set to be
155 [Mbps] and 10 [Mbps], respectively. Further, prop-
agation delays of links between the routers, and that be-
tween the routers and the sender/receiver hosts are 100 [msec]
and 1 [msec], respectively. In this simulation experi-
ment, connection i starts sending packets at time t = (i−

1)×500 [sec]. The simulation ends at 4,000 [sec]. When
seven connections join the network, the ideal through-
put becomes 1.5 [Mbps] for connection 1, 0.75 [Mbps]
for connections 2 and 3, and 0.375 [Mbps] for connec-
tions 4 through 7. In this case, packet loss tends to oc-
cur in a bursty fashion due to buffer overflow at drop–
tail routers. In the E-ATBT algorithm, the packet loss
rates of the connections are monitored and be used for
throughput estimation.

Figure 8 shows the results for the throughput and
assigned buffer size as a function of time. We set the
send socket buffer size B = 350 [packets]. As shown
in Figures 8(a) and 8(d), connections sharing router 3
(connections 4 through 7) have unfair throughput val-
ues in the EQ case, in spite of the fact that conditions
of four connections are completely identical. It is due to
an accidental unfairness of the TCP congestion control
algorithm, which is well known in the literature. See,
e.g., [20, 21]. Figures 8(b) and 8(e) clearly show that
ATBT cannot provide a stable buffer assignment. It is
because ATBT assigns the buffer to each TCP connec-
tion according to the current window size of the con-
nection, which oscillates dynamically due to an inher-
ent nature of the TCP window mechanism. Therefore,
the assigned buffer sizes of connections not requiring
large buffer (connection 2 through 7 in the current case)
are often inflated. It leads to the temporary decrease of
the buffer assigned to connections that need large buffer
(connection 1), as in the constant packet loss rate case of
the previous subsection. As a result, the throughput of
connection 1 is often degraded. On the other hand, our
proposed E-ATBT keeps a stable and fair buffer assign-
ment as shown in Figure 8(c), leading to fair treatment
in terms of throughput (Figure 8(f)).

Even when the buffer size is smaller, E-ATBT keeps
its effectiveness. Results are shown in Figure 9, where
the buffer size B is decreased to 200 [KBytes]. Fig-
ures 9(d) and 9(e) show that EQ and ATBT mechanisms
cannot provide fairness among connections. In particu-
lar, throughput of connection 1 is significantly degraded,
and connections going through router 3 receive different
throughput values. It is because in assigning the buffer,
the EQ method does not take care of the connections’
characteristics at all. See Figure 9(a). It is also true for
the ATBT mechanism (Figure 9(b)). It is mainly due
to the oscillation of the assigned buffer to each connec-
tion as shown in Figures 9(b). From the figure, it is also
verified that ATBT, which equally re-assigns the excess
buffer to connections, does not work well. On the other
hand, in the E-ATBT algorithm, throughput of connec-

8

0

50

100

150

200

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2

#3
#4

#5
#6

#7
#8

(a) EQ: Assigned Buffer Size

0

50

100

150

200

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1 #2 #3 #4 #5 #6 #7 #8

(b) ATBT: Assigned Buffer Size

0

50

100

150

200

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2
#3

#4 #5
#6

#7

#8

(c) E-ATBT: Assigned Buffer Size

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1 #2

#3 #4

#5 #6 #7
#8

(d) EQ: Throughput

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1 #2

#3 #4

#5
#6

#7

#8

(e) ATBT: Throughput

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1 #2

#3 #4

#5 #6 #7

#8

(f) E-ATBT: Throughput

Figure 6: Result of Simulation Experiment 1: p1 = p2 = 0.02, p3 = p4 = 0.01, p5 = p6 = 0.002, p7 = p8 =
0.001, B = 200 [packets]

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2

#3

#4

#5

#6

#7

(a) EQ: Assigned Buffer Size

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1 #2 #3 #4 #5 #6 #7

(b) ATBT: Assigned Buffer Size

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2

#3

#4

#5
#6
#7

(c) E-ATBT: Assigned Buffer Size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2,#3

#4

#5,#6,#7

(d) EQ: Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1
#2,#3

#4,#5,#6,#7

(e) ATBT: Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2,#3

#4,#5,#6,#7

(f) E-ATBT: Throughput

Figure 8: Comparative Results of Simulation Experiment 2: B = 350 [packets]

9

0

50

100

150

200

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2

#3

#4

#5

#6

#7

(a) EQ: Assigned Buffer Size

0

50

100

150

200

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1 #2 #3 #4 #5 #6 #7

(b) ATBT: Assigned Buffer Size

0

50

100

150

200

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2

#3

#4
#5

#6

#7

(c) E-ATBT: Assigned Buffer Size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2,#3

#4,#5

#6,#7

(d) EQ: Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2,#3

#4

#5,#6,#7

(e) ATBT: Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2,#3

#4,#5,#6,#7

(f) E-ATBT: Throughput

Figure 9: Comparative Results of Simulation Experiment 2: B = 200 [packets]

tion 1 is kept to be a high value, and much better fair-
ness can be achieved (Figures 9(c) and 9(f)). Note that
a slight difference of the throughput values of connec-
tions 2 and 3 (and connections 4 through 7) is due to
an estimation error of the required buffer sizes. In the
case of the drop-tail router, the parameters (p, rtt, and
rto) observed for the throughput estimation change more
largely than the constant packet loss rate case because of
the bursty nature of packet losses, leading to the differ-
ence of the assigned buffer size.

5 Implementation Experiments of SSBT

In this section, we present the results obtained by our
experimental system. We implemented EQ, ATBT and
SSBT mechanisms on Intel Pentium PC running FreeBSD,
and two machines are directly connected. In the experi-
ments, we focus on the following four subjects;

1. Server performance improvement by the SMR scheme

2. Fair buffer assignment among different connec-
tions

3. Scalability against the number of connections

4. Web server performance evaluation

622 [622 [Mbps] MAPOS link

Sender Receiver

Figure 10: Network Environment (1)

The experimental results are shown in the following sub-
sections in turn.

5.1 Experiment 1: Server Performance Improve-
ment by SMR

We implemented the SMR scheme explained in Sub-
section 3.2 on Pentium-III Xeon 550MHz machine with
512MB memory, running FreeBSD 4.0-RELEASE. The
two machines are directly connected by the the 622 [Mbps]
MAPOS (Multiple Access Protocol Over SONET/SDH) [22]
link, as shown in Figure 10. We did not change the
TCP/IP implementation, except that the delayed ACK
option [16] is not used. The sender host transmits 500 [MB]
data to the receiver host with a single TCP connection
through the MAPOS link. We then calculate the mean
TCP throughput by measuring the transfer time of the
data.

Figure 11 shows the mean TCP throughput values

10

0

50

100

150

200

250

300

350

400

16 32 64 128 256 512
T

hr
ou

gh
pu

t [
M

bp
s]

Socket Buffer Size [KByte]

Proposed Method

Original Method

Figure 11: TCP Throughput using MAPOS Link

of the original and proposed mechanisms, as a function
of the socket buffer size of the sender host. The socket
buffer size of the receiver host is identically set to that of
the sender socket buffer size. The result shows that the
proposed mechanism can improve up to about 30% of
the throughput compared with the original mechanism.
In this case, the bottleneck for performance improve-
ment is located at endhosts since 622 [Mbps] bandwidth
of the MAPOS link is large enough. That is, the sender
host cannot inject data packets to fully utilize the link
bandwidth in the original system, because its processing
performance in TCP data transfer is slow compared with
the network bandwidth. However, our SMR scheme can
utilize the bandwidth of the MAPOS link largely com-
pared with the original systems, and therefore the effect
of the proposed mechanism becomes significant.

In the following experiments, we use the server ma-
chine which is equipped with SMR scheme.

5.2 Experiment 2: Fair Buffer Assignment among
Different Connections

We next evaluate the E-ATBT mechanism of SSBT. First,
we investigate the fairness property of three buffer as-
signment algorithms described in Section 4. In this ex-
periment, we consider the situation where three TCP con-
nectionsare established at the sender host through 622 [Mbps]
MAPOS link. Three connections have different packet
loss rates; 0.005 for connection 1, 0.01 for connection 2,
and 0.02 for connection 3, as shown in Figure 12. In the
experiment, packets are intentionally dropped at the re-
ceiver host. Note that with those packet loss rates, three
connections can achieve throughput values of about 55,
90, and 220 [Mbps], respectively, when an enough amount
of the send socket buffer is assigned to each connection.

Figure 13 compares throughput values of three con-
nections and total throughput. The horizontal axis is the
total size of the send socket buffer. In the EQ case (Fig-
ure 13(a)), the three connections can achieve their maxi-

� � � � � � � � � 	
 �

� �
 � � � � � � � � � � � 	 �

� � � � � �
 � � � � � � � � � � � � �
 � � � 	 	 � � �
 � � � � � � �

� � � � � �
 � � � � � � � � � � � � �
 � � � 	 	 � � �
 � � � � � �

� � � � � �
 � � � � � � � � � � � � �
 � � � 	 	 � � �
 � � � � � �

� � � � � � � � � � � 	
 �

� � � � � � � � �� � � � � � � � �

Figure 12: Network Environment (2)

Sender Host

Receiver Host 1

Receiver Host 2

Router 1

Router 2

1000 [Mbps]
1000 [Mbps]

100 [Mbps] 100 [Mbps]

Figure 14: Network Environment (3)

mum throughputs when the total buffer size is larger than
240 [KBytes], while ATBT and E-ATBT need only about
200 [KBytes] and 170 [KBytes], respectively. It is due to
the same reason explained in Section 4. Connections 2
and 3 do not need as much buffer size as connection 1
does, but the EQ algorithm cannot re-allocate the excess
buffer of connections 2 and 3 to connection 1. On the
contrary, ATBT and E-ATBT algorithms work well for
the buffer assignment.

By comparing ATBT and E-ATBT algorithms in Fig-
ures 13(b) and (c), it is clear that E-ATBT can provide
much higher throughput for connection 1. The differ-
ence is due to re-assignment policies of excess buffer to
connections. In the ATBT algorithm, the excess buffer
of connection 3 is equally re-assigned to connections 1
and 2. Then, only connection 3 is assigned a sufficient
size of the buffer while connections 1 and 2 need more
buffer. On the other hand, E-ATBT re-assigns the excess
buffer in proportion to the required buffer size of connec-
tions 1 and 2. Accordingly, E-ATBT gives more buffer
to connection 1 than connection 2 because the required
buffer size of connection 1 is larger than that of connec-
tion 2. Consequently, connection 1 can achieve higher
throughput at an expense of small throughput degrada-
tion of connection 2. Then, the total throughput of E-
ATBT is highest among three algorithms regardless of
the total buffer size as shown in Figure 13.

We next present a time–dependent behavior of the

11

0

50

100

150

200

250

300

350

400

80 100 120 140 160 180 200 220 240 260 280

T
hr

ou
gh

pu
t [

M
bp

s]

Total Buffer Size [KBytes]

Total

Connection1

Connection2

Connection3

(a) EQ Case

0

50

100

150

200

250

300

350

400

80 100 120 140 160 180 200 220 240 260 280

T
hr

ou
gh

pu
t [

M
bp

s]

Total Buffer Size [KBytes]

Total

Connection1

Connection2

Connection3

(b) ATBT Case

0

50

100

150

200

250

300

350

400

80 100 120 140 160 180 200 220 240 260 280

T
hr

ou
gh

pu
t [

M
bp

s]

Total Buffer Size [KBytes]

Total

Connection1

Connection2

Connection3

(c) E-ATBT Case

Figure 13: Fairness among Three Connections

buffer size assigned to each connection in Figure 15. We
use the network topology depicted in Figure 14. In the
two routers (Router 1 and 2) in the figure, we use the
PC-based router called ALTQ [23] to realize the RED
router. We establish Connections 1, 2, and 4 between
the server host and the client host 1, and connection 3
between the server host and the client host 2. In this ex-
periment, connection 1 and 2 first start packet transmis-
sion at time 0 [sec]. Then, connection 3 and 4 joins the
network in time 5 [sec] and 10 [sec], respectively. Here,
we set the total buffer size to be 512 [KBytes]. In ATBT
(Figure 15(a)), the assigned buffer sizes are heavily os-
cillated because the ATBT algorithm adapts the buffer
assignment according to the window size. Another and
more important reason is that when retransmission time-
out expiration occurs at a certain connection, that con-
nection resets the window size to 1 [packet] according
to the TCP retransmission mechanism. Then, the as-
signed buffer size of that connection becomes very low.
Once the assigned buffer gets small, the connection can-
not inflate its window size during a while because of the
throttled buffer size. It is the reason why the assigned
buffer size is kept low during a while in the ATBT algo-
rithm. On the other hand, E-ATBT can provide the sta-
ble and fair buffer assignment as shown in Figure 15(b).
It brings higher throughput to each TCP connection as
having been shown in Figure 17.

5.3 Experiment 3: Scalability against the Num-
ber of Connections

We next turn our attention to the scalability of the buffer
assignment algorithms against the number of connec-
tions. Figure 16 depicts the experimental setting for this
purpose. One TCP connection is established using the
MAPOS link (which is referred to as MAPOS connec-

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[K
B

yt
es

]

Time [sec]

Connection 1
Connection 2
Connection 3
Connection 4

(a) ATBT Case

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[K
B

yt
es

]

Time [sec]

Connection 1
Connection 2
Connection 3
Connection 4

(b) E-ATBT Case

Figure 15: Changes of Assigned Buffer Sizes

tion below). The several numbers of TCP connections
are simultaneously established through the Ethernet link
(Ethernet connections). Through this experiment, we in-
tend to investigate the effect of the number of Ethernet
connections on the performance of the MAPOS connec-
tion.

Figure 17 shows the throughput values of the MA-
POS connection dependent on the number of Ethernet
connections. In addition to the results of EQ, ATBT and
E-ATBT algorithms, we also present the results for the
cases where the constantsize (16 [KBytes] or 64 [KBytes])
of the send socket buffer is assigned to each TCP connec-

12

� � � � � � � � � 	
 �

� � � � � � � � � � � � � � � � � �

 ! � � � �
 � � � � � � �
 � � � � �

�
�

 ! � � � �
 � � � � � � �
 � � � � "

� � � � � � 	 � �
 � � � � � � � � �
 � � � �

� # # � � � 	

� � � � � � � � � � � 	
 �

Figure 16: Network Environment (4)

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t [

M
bp

s]

Number of Ethernet Connections

E-ATBT

ABT

EQ

64KB

16KB

Figure 17: Throughput of MAPOS Connection vs. the
Number of Ethernet Connections

tion. Such a constant assignment is a default mechanism
of the current TCP/IP implementation in major operat-
ing systems. Results are plotted in the figure with labels
“16KB” and “64KB.” In thisfigure, we set the total of the
send socket buffer to 256 [KBytes]. Therefore, if we as-
sign the constant buffer size of 64 [Kbytes] to each TCP
connection, the sender allows up to four connections at
the same time.

We can make several important observations from
this figure. First, we can see that the constant assign-
ment algorithm, which is widely employed in the current
OS, has the following drawback. If 16 [KBytes] send
socket buffer is assigned to each TCP connection, the
MAPOS connection suffers from very low throughput
because it is too small for the 622 [Mbps] MAPOS link.
When each connection is given 64 [KBytes] buffer size,
on the other hand, the throughputof the MAPOS connec-
tion becomes considerably high as shown in Figure 17.
However, the number of connections which can be si-
multaneously established is severely limited. In the EQ
algorithm, when the number of Ethernet connections ex-
ceeds four, the throughput of the MAPOS connection is
suddenly decreased to about 11 [Mbps]. It is because the
EQ algorithm does not distinguish the MAPOS connec-
tion and the Ethernet connections, and assigns an equal
size of the send socket buffer to all connections. There-
fore, as the number of Ethernet connections is increased,
the assigned buffer size to the MAPOS connection is de-
creased, leading to throughput degradation of the MA-
POS connection.

When we employ the ATBT or E-ATBT algorithm,
the throughput degradation of the MAPOS connection
can be limited even when the number of Ethernet con-
nections is increased. However, when the number of
Ethernet connections is more than 11, throughput val-
ues of ATBT and E-ATBT algorithms becomes distin-
guishable as shown in Figure 17. It is again caused by
the instability of the assigned buffer size and by the poor
re-assignment algorithm of ATBT, as having been ex-
plained in the previous subsection. Even in the E-ATBT
algorithm, the throughput of the MAPOS connection is
slightly degraded by the larger number of Ethernet con-
nections. It is because the total of the required buffer
size of Ethernet connections is increased, even though
the required buffer of the Ethernet connections is small.
Then, the buffer assigned to the MAPOS connection is
decreased because the excess buffer becomes small. How-
ever, the degree of the throughput degradation of the
MAPOS connection can be limited by the E-ATBT al-
gorithm.

5.4 Experiment 4: Web Server Performance Eval-
uation

For the last experiment, the effectiveness of the SMR
scheme is presented using the machine running the Apache
Web server [24]. We use the same network topology
as shown in Figure 10, and run the SMR-enabled Web
server on the sender host. At the receiver host, we use
httperf [25] to generate document transfer requests to the
Web server by HTTP, by which we consider more real-
istic scenario for the traffic arriving at the server. For
this purpose, we follow [26] in determining the char-
acteristics of the Web access, which includes the doc-
ument size distribution, the idle time distribution of re-
quests, and the distribution for the number of embed-
ded documents. For comparison purpose, we use both
of HTTP/1.0 and HTTP/1.1 for Web access to the server.
The send/receive socket buffer size of each TCP con-
nection is set to 64 [KBytes]. We run each experiment
during 30 minutes, which corresponds to about 25,000
document transfer requests from each client.

Figure 18 shows the average performance gain by
the SMR scheme as a function of the document size.
Here, the average performance gain for the documents
with size i [Bytes] was determined as follows. Let the
number of document requests during the experiments be
Msmr,i and Morig,i for the case with and without the
SMR scheme. Similarly, the observed transfer time of
jth document with size i is denoted as Tsmr,i,j and Torig,i,j.

13

80

90

100

110

120

130

140

150

1000 10000 100000 1e+06
A

ve
ra

ge
 P

er
fo

rm
an

ce
 G

ai
n

[%
]

Document Size [Bytes]

(a) HTTP/1.1, 10 Clients

80

90

100

110

120

130

140

150

1000 10000 100000 1e+06

A
ve

ra
ge

 P
er

fo
rm

an
ce

 G
ai

n
[%

]

Document Size [Bytes]

(b) HTTP/1.1, 60 Clients

80

90

100

110

120

130

140

150

1000 10000 100000 1e+06

A
ve

ra
ge

 P
er

fo
rm

an
ce

 G
ai

n
[%

]

Document Size [Bytes]

(c) HTTP/1.1, 600 Clients

80

90

100

110

120

130

140

150

1000 10000 100000 1e+06

A
ve

ra
ge

 P
er

fo
rm

an
ce

 G
ai

n
[%

]

Document Size [Bytes]

(d) HTTP/1.0, 600 Clients

Figure 18: Document Size vs. Average Performance
Gain by SMR Scheme

Then, the average performance gain Gi for documents

with size i is defined as;

Gi =




∑Morig,i

j=1
i

Torig,i,j

Morig,i


/ 


∑Msmr,i

j=1
i

Tsmr,i,j

Msmr,i


(2)

Note that since we generated the requests according to
the probability functionsfor the document size, idle time,
and the number of embedded documents, Morig,i and
Msmr,i may be different.

The cases of 10, 60, and 600 clients with HTTP/1.1,
and the case of 600 clients with HTTP/1.0 are shown
in Figures 18(a), 18(b), 18(c), and 18(d), respectively.
Recall that in Subsection 5.1, we have found that the
SMR scheme can improve up to 30% of the server per-
formance (Figure 11). However, it can be observed in the
figures that the performance gain by the SMR scheme is
limited when the number of concurrent clients is small.
In the case of ten clients (Figure 18(a)), there are some
points where the performance of the SMR scheme is
even lower than the original scheme. It is due to the
small sizes of the documents, as having been explained
in Subsection 3.3. However, as the number of clients is
increased, the performance gain becomes stable and sig-
nificant. Compare Figures 18(a) through 18(c). As the
number of concurrent clients increases, the server load
gets larger, and the effect of the memory copy reduc-
tion becomes significant. When we compare HTTP/1.0
and HTTP/1.1 (Figures 18(c) and 18(d)), the effect of the
SMR scheme in HTTP/1.1 is larger than that in HTTP/1.0
as expected. The SMR scheme does not help improve
the performance in the HTTP/1.0 case. It is because
TCP’s three-way handshake is necessary in every doc-
ument transfer in HTTP/1.0, and it occupies the most
part of the total transfer time, as we have explained in
Subsection 3.3.

We are now investigating the effect of our E-ATBT
on the Web server using the same traffic model as above.
As partly observed in the experimental results of the cur-
rent subsection, HTTP/1.1 alleviates an ill–effect of the
small-sized documents, which is one main problem of E-
ATBT as described in Subsection 3.3. We can therefore
expect that E-ATBT exhibits good performance even in
a realistic traffic scenario.

6 Conclusion

In this paper, we have proposed SSBT (Scalable Socket
Buffer Tuning), a novel architecture for effectively and
fairly utilizing the send socket buffer of the busy Internet

14

server. SSBT consists of the two algorithms, the SMR
and E-ATBT schemes. The SMR scheme can reduce
the number of memory-copy operations when the data
packet is sent by TCP, and improve the overall perfor-
mance of the server host. The E-ATBT algorithm assigns
the send socket buffer to the connections according to
the estimated throughput of connections. We have con-
firmed the effectiveness of the SSBT algorithm through
both of simulation and implementation experiments, and
have shown that SSBT can improve the overall perfor-
mance of the server, and provide the fair assignment of
the send socket buffer to the heterogeneous TCP connec-
tions.

In Subsection 5.4, we have only shown the effec-
tiveness of the SMR scheme under the realistic traffic
scenario based on the statistical model proposed in [26].
We are now conducting the experiment to investigate the
effectiveness of the E-ATBT algorithm using the same
traffic model.

References

[1] P. Druschel and L. L. Peterson, “Fbufs: a high-
bandwidth cross-domain transfer facility,” in Proceed-
ings of the Fourteenth ACM symposium on Operating
Systems Principles, pp. 189–202, Dec. 1993.

[2] J. Chase, A. Gallatin, and K. Yocum, “End-system opti-
mizations for high-speed TCP,” appear in IEEE Com-
munications, special issue on high-speed TCP, June
2000.

[3] A. Gallatin, J. Chase, and K. Yocum, “Trapeze/IP:
TCP/IP at near-gigabit speeds,” in Proceedings of 1999
USENIX Technical Conference, June 1999.

[4] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP
buffer tuning,” in Proceedings of ACM SIGCOMM’98,
pp. 315–323, Aug. 1998.

[5] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Mod-
eling TCP throughput: a simple model and its empiri-
cal validation,” in Proceedings of ACM SIGCOMM’98,
pp. 303–314, Aug. 1998.

[6] S. Floyd and K. Fall, “Promoting the use of end-to-end
congestion control in the Internet,” IEEE/ACM Transac-
tions on Networking, vol. 6, Aug. 1999.

[7] J. Martin, A. Nilsson, and I. Rhee, “The incremental
deployability of RTT-based congestion avoidance for
high speed TCP Internet connections,” in Proceedings
of ACM SIGMETRICS 2000, pp. 134–144, June 2000.

[8] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and
improvement of fairness between TCP Reno and Vegas
for deployment of TCP Vegas to the Internet,” in Pro-
ceedings of IEEE ICNP 2000, Nov. 2000.

[9] D. Lin and R. Morris, “Dynamics of random early detec-
tion,” in Proceedings of ACM SIGCOMM ’97, pp. 127–
137, Oct. 1997.

[10] M. Shreedhar and G. Varghese, “Efficient fair queuing
using deficit round robin,” IEEE/ACM Transactions on
Networking, vol. 4, pp. 375–385, June 1996.

[11] T. J. Ott, T. V. Lakshman, and L. Wong, “SRED: Sta-
bilized RED,” in Proceedings of IEEE INFOCOM’99,
Mar. 1999.

[12] G. Hasegawa, T. Matsuo, M. Murata, and H. Miyahara,
“Comparisons of packet scheduling algorithms for fair
service among connections on the Internet,” in Proceed-
ings of IEEE INFOCOM 2000, Mar. 2000.

[13] S. Floyd and V. Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Transac-
tions on Networking, vol. 1, pp. 397–413, Aug. 1993.

[14] X. Xiao, L. Ni, and W. Tang, “Benchmarking and analy-
sis of the user-perceived performance of TCP/UDP over
Myrinet,” Tech. Rep., Michigan State Univ., Dec. 1997.

[15] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen,
“An analysis of TCP processing overhead,” IEEE Com-
munications Magazine, vol. 27, pp. 23–29, June 1989.

[16] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Pro-
tocols. Reading, Massachusetts: Addison-Wesley, 1994.

[17] M. Nabe, M. Murata, and H. Miyahara, “Analysis and
modeling of World Wide Web traffic for capacity dimen-
sioning of Internet access lines,” Performance Evalua-
tion, vol. 34, pp. 249–271, Dec. 1999.

[18] M. E. Crovella and A. Bestavros, “Self-similarity
in World Wide Web traffic: Evidence and possible
causes,” IEEE/ACM Transactions on Networking, vol. 6,
pp. 835–846, Dec. 1997.

[19] Network Simulator - ns (version 2). available from
http://www-mash.cs.berkeley.edu/ns/.

[20] S. Floyd and V. Jacobson, “On traffic phase effects in
packet-switched gateways,” Internetworking: Research
and Experience, vol. 3, pp. 397–413, Aug. 1992.

[21] A. Veres and M. Boda, “The chaotic nature of TCP
congestion control,” in Proceedings of IEEE INFOCOM
2000, Mar. 2000.

[22] K. Murakami and M. Maruyama, “MAPOS - multiple
access protocol over SONET/SDH, version 1,” Request
for Comments 2171, June 1997.

[23] ALTQ (Alternate Queueing for BSD UNIX) , available
from http://www.csl.sony.co.jp/˜kjc/
software.html.

[24] Apache Home Page. available from http://www.
apache.org/.

15

[25] D. Mosberger and T. Jin, “httperf – a tool for measuring
Web server performance,” Technical Report, Hewlett-
Packard Laboratories, HPL-98-61, Mar. 1998.

[26] P. Barford and M. Crovella, “Generating representa-
tive Web workloads for network and server performance
evaluation,” in Proceedings of ACM SIGMETRICS ’98,
1998.

16

