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In this paper, we focus on fairness and stability of the congestion control mechanisms

adopted in several versions of TCP by investigating their time–transient behaviors through

an analytic approach. In addition to TCP Tahoe and TCP Reno, we also consider TCP Vegas

which has been recently proposed for higher throughput, and enhanced TCP Vegas, which is

proposed in this paper for fairness enhancements. We consider homogeneous case, where two

connections have the equivalent propagation delays, and heterogeneous case, where each con-

nection has different propagation delay. We show that TCP Tahoe and TCP Reno can achieve

fairness among connections in homogeneous case, but cannot in heterogeneous case. We also

show that TCP Vegas can provide almost fair service among connection, but there is some un-

fairness caused by the essential nature of TCP Vegas. Finally, we explain the effectiveness of

our enhanced TCP Vegas in terms of fairness and throughput.

Keywords: Congestion Control Mechanism, Fairness, Stability, TCP Tahoe, TCP Reno, TCP

Vegas

1. Introduction

Inapplicabilities of the traditional transport–layer protocols such as TCP (Trans-

mission Control Protocol) [1,2] to the future high–speed network have been repeatedly

claimed in the literature. Accordingly, some new transport–layer protocols have been

developed. Examples are XTP [3] and the one in [4] for ATM (Asynchronous Transfer

Mode) networks. However, many of the current Internet services including HTTP (and
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World Wide Web) and FTP (File Transfer Protocol) use TCP. Thus, even if the network

infrastructure may change in the future, many TCP applications would continuously be

used. This observation leads to the active researches on TCP for high speed data transfer.

See, e.g., [5,6]. However, most of past studies have concentrated on the effectiveness of

TCP in spite of the fact that stability and fairness are other important issues, and those

sometimes become more essential than effectiveness [7].

In this paper, we focus on stability and fairness of several versions of TCP through

an analysis. To make clear the essential nature of the congestion control mechanisms

of each version of TCP, we use a rather simple model where two connections share the

bottleneck bandwidth. We will present some findings through the analytic approach in

this paper. In the homogeneous case, where two TCP connections have identical propa-

gation delays, we point out that current versions of TCP (Tahoe and Reno versions) can

give a reasonably fair service at the expense of stability. Here, by “fair”, we mean that

by dynamically adjusting the window size of TCP, throughputs of connections sharing

the bottleneck bandwidth is close. On the other hand, a more recently proposed TCP

Vegas [8,9], which adopts a different congestion control mechanism from TCP Tahoe

and Reno, can offer higher performance and the stable operation; i.e., the window size is

converged to a fixed value if the number of connections is not varied and each connec-

tion continuously transmits segments (packets). However, it sometimes fails to obtain

the fairness among connections, that is, the throughputs of connections are converged to

different values. Based on our results, we will propose an enhanced version of TCP Ve-

gas which can improve fairness among connections. Our solution is simple. We modify

TCP Vegas in such a way that convergence of the window size of the connection is not

allowed. By this mechanism, one promising property of original TCP Vegas that the TCP

window size is stabilized is lost, but the fairness among connections can be achieved. It

seems to be a good example that the fairness and stability (and effectiveness) cannot be

achieved at the same time within networks.

We also investigate the heterogeneous case where two connections have different

propagation delays. In this case, traditional TCP Tahoe and TCP Reno cannot obtain fair-

ness among connections because of their inherent control mechanisms of the window

size; the rate of increasing window size depends on the round trip time of the connec-

tion. TCP Vegas gives a better fairness property as investigators expected. However, it

still has pitfalls as we will explore in the later. Then, our enhanced TCP Vegas can achieve

fairness among connections even with different propagation delays.

This paper is organized as follows. We first describe the network model that we will

use in our analysis and simulation in Section 2. Next, we briefly introduce the congestion
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Figure 1. Network Model

control mechanisms of TCP Tahoe, TCP Reno, TCP Vegas in Section 3. In Section 4,

we show our analysis methods, by which we will reveal the characteristics of the above

three versions, propose our enhanced TCP Vegas, and show its effectiveness. Finally, in

Section 5, we make some concluding remarks.

2. Network Model

The network model that we will use in the analysis and simulation is depicted in Fig-

ure 1. The model consists of two sources (SES1, SES2), two destinations (DES, DES2),

two intermediate switches (or routers) (SW1, SW2), and links interconnecting between

the end stations and switches. We consider two connections; Connection 1 from SES1 to

DES1, and Connection 2 from SES2 to DES2. Both connections are established via SW1

and SW2, and the link between SW1 and SW2 is shared between two connections. The

bandwidth of the shared link is� [segment/sec]. The buffer size of SW1 isB [segments].

The propagation delays between SESi and DESi are�i (i = 1; 2).

In analysis and simulation, we consider the situation that Connection 1 starts to

transfer data segments at first, and Connection 2 joins the network afterward. Each SES

transmits data segments according to the TCP protocol. It is assumed that each SES is a

greedy source, that is, each SES has infinite data to transmit. TCP segment size is fixed

atm [bytes]. Then, we will focus on the dynamics of congestion window size as a func-

tion of time, which is defined ascwndi(t). Stability and fairness between connections

are investigated by comparingcwnd1(t) andcwnd2(t).

3. Congestion Control Mechanisms of TCP

In this paper, we consider three versions of TCP; Tahoe, Reno, and Vegas versions.

TCP Tahoe and Reno are widely used in the current Internet. TCP Vegas is a recently
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proposed one in [8–10]. In TCP, the window size for the connection, called a conges-

tion window size (cwnd), is changed according to the network congestion indication. In

what follows, we focus on the time–dependent behavior ofcwnd, since the change of the

window size has a significant impact on TCP behavior as will be shown later. For this

purpose, we first summarize algorithms to updatecwnd(t) in three TCP versions in turn.

The analysis methods of the transient behavior ofcwndi(t) (for Connections 1 and 2) in

the network model depicted in Figure 1 will then be developed in the next section.

For reference purposes, we depict Figure 2 which shows typical behaviors of the

window sizes as a function of time,cwnd(t), observed in four TCP versions. The figure

is obtained by computer simulation using the network model depicted in Figure 1 except

that only one connection (Connection 1) is activated. For parameters, we used the link

bandwidth� = 20Mbps, the propagation delay�1 = 2msec, the buffer sizeB = 10 seg-

ments, and� = 2, � = 4, Æ = 3 for control parameters of TCP Vegas and enhanced TCP

Vegas (see Subsection 3.3).

3.1. TCP Tahoe version

In TCP Tahoe, the window sizecwnd is cyclically changed as indicated in Fig-

ure 2(a).cwnd continues increasing until segment loss occurs. When it does occur, TCP

determines that the network is congested, and throttlescwnd down to the size of one seg-

ment. TCP Tahoe has two phases in increasingcwnd; Slow Start Phase and Congestion

Avoidance Phase. When an ACK segment is received by TCP at the server side at time

t+ tA, cwnd(t+ tA) is updated fromcwnd(t) as follows (see, e.g., [1]);

cwnd(t+ tA) =

8>>>>>>><
>>>>>>>:

Slow Start Phase :

cwnd(t) +m; if cwnd(t) < ssth;

Congestion Avoidance Phase :

cwnd(t) +m2=cwnd(t); if cwnd(t) � ssth;

(1)

wheressth is the threshold value at which TCP changes its phase from Slow Start Phase

to Congestion Avoidance Phase. When segment loss is detected by timeout or fast re-

transmission algorithm [1],cwnd(t) andssth are updated as follows;

ssth= cwnd(t)=2 (2)

cwnd(t) =m
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Figure 2. The Change of Window Size of four versions of TCP

That is, TCP Tahoe again enters Slow Start Phase when segment loss occurs. Therefore,

the dynamics of TCP Tahoe in a simplest case is; Slow Start Phase!Congestion Avoid-

ance Phase! segment loss! Slow Start Phase! � � �.

3.2. TCP Reno version

TCP Reno is similar to TCP Tahoe, but uses another algorithm when segment loss

occurs. In Slow Start Phase and Congestion Avoidance Phase, TCP Reno also uses

Eq. (1) to update the window size, but when segment loss is detected by fast retransmis-

sion algorithm, the window sizecwnd(t) is halved. That is,

ssth= cwnd(t)=2
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cwnd(t) = ssth

TCP Reno then enters Fast Recovery Phase [1]. In this phase, the window size is in-

creased by one segment when a duplicate ACK segment is received, andcwnd(t) is re-

stored tossth when the non–duplicate ACK segment corresponding to the retransmitted

segment is received. Figure 2(b) is a typical example of the behavior ofcwnd(t).

3.3. TCP Vegas version

In TCP Tahoe and Reno, the window size,cwnd, is increased until segment loss oc-

curs due to congestion. Then, the window size is throttled, which leads to the throughput

degradation of the connection. However, it cannot be avoided because of an essential

nature of the congestion control mechanism adopted in TCP Tahoe and Reno. It can de-

tect network congestion information only by segment loss. However, it becomes a prob-

lem since the segment may be lost when the TCP connection itself causes the congestion

because of its too large window size. Ifcwnd is appropriately controlled such that the

segment loss does not occur in the network, the throughput degradation due to throttled

window can be avoided. This is the reason that TCP Vegas was introduced.

TCP Vegas employs another mechanism for detecting the network congestion. It

controlscwnd by observing changes of RTTs (Round Trip Time) of segments that the

connection has sent before. If observed RTTs become large, TCP Vegas recognizes that

the network begins to be congested, and throttlescwnd down. If RTTs become small, on

the other hand, TCP Vegas determines that the network is relieved from the congestion,

and increasescwnd. Then,cwnd in an ideal situation becomes converged to the appro-

priate value as shown in Figure 2(c), and the throughput is not degraded. In Congestion

Avoidance Phase, the window size is updated as;

cwnd(t+ tA) =

8>><
>>:
cwnd(t) + 1; if diff < �

base rtt

cwnd(t); if �
base rtt

� diff � �
base rtt

cwnd(t) � 1; if �
base rtt

< diff

(3)

diff = cwnd(t)=base rtt� cwnd(t)=rtt

wherertt is a observed round trip time,base rtt is the smallest value of observed RTTs,

and� and� are some constant values.

TCP Vegas has another feature in its congestion control algorithm. That isslow

Slow Start. The rate of increasingcwnd in slow start phase is a half of that in TCP Tahoe

and TCP Reno;

cwnd(t+ tA) = cwnd(t) +m=2 (4)
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Note that Eq. (3) used in TCP Vegas indicates that if RTTs of the segments are stable,

the window size remains unchanged. That can be seen by Figure 2(c), where the window

size is converged to a fixed value in steady state. However, when two or more connections

share the bottleneck link, the window sizes are not converged to an identical value as will

be shown in Subsection 4.4. Then, we will present an enhanced version of TCP Vegas to

prevent the convergence of the window size to a fixed value in Subsection 4.5.

4. Analysis

In this section, we analytically investigate the congestion control mechanisms of

TCP in terms of stability and fairness between two connections. We mainly focus on

changes ofcwnd1(t) andcwnd2(t), the time–dependent behavior of the window sizes

of connections.

4.1. Analysis Method

To investigate fairness between two connections, we employ thecwnd1–cwnd2
graph depicted in Fig. 3 [11]. In this graph, x–axis and y–axis represent the window sizes

of Connections 1 and 2, respectively. The point (cwnd1(t), cwnd2(t)) represents the sta-

tus observed at timet. The line labeled with ‘Fairness Line’ corresponds to the case of

cwnd1 = cwnd2, i.e., the window sizes of both connections are equivalent if the point is

on the line. By the ‘Efficiency Line’, it is shown whether the link is fully utilized or not.

All segments from both connections are served at the bottleneck link with the bandwidth

of �. Thus, if the link is fully utilized at timet, � equals the sum of the rates at which the
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segments of both connections are served. By approximately representing the arrival rate

of segments bycwnd1(t)=�1 andcwnd2(t)=�2, we have a relation

�=
cwnd1(t)

�1
+

cwnd2(t)

�2
(5)

We further introduceWe as

We = cwnd1(t) + cwnd2(t) (6)

such that the values ofcwnd1(t) andcwnd2(t) satisfy Eq.5. Then, the Efficiency Line

corresponds toWe, which means that if the point is located lower than the ‘Efficiency

Line,’ the link bandwidth is not fully utilized. In the homogeneous case (�1 = �2 = � ),

Eq.(6) after substituting Eq.(5) becomes

We=2 � �

The Segment Loss line in the figure representscwnd1+cwnd2 = Ws [segments], where

Ws is the sum ofWe and the buffer size of the intermediate bottleneck switch;

Ws=We +B

Thus, segment loss occurs if the point is beyond the ‘Segment Loss Line’. If the points

are located between ‘Efficiency Line’ and ‘Segment Loss Line’, it can be said that TCP

offers an ideal control mechanism in the sense that the network bandwidth is fully utilized

and no segment loss occurs. When the fairness is also important, the points should be kept

around the ‘Fairness Line’.

Before presenting the analytic results, we illustrate simulation results in Fig. 4 to

give some feeling on the behavior of TCP. We will use it as an illustrative example for

deriving analytic results. Note that discussions on the results will also presented in the

following subsections. In the figure, the changes of the window sizes of two connections

as a function of time are shown for the homogeneous case where two connections have

same propagation delays. In simulation, Connection 2 joins the network at timet=1000

[msec]. We set� = 20 [Mbps], �1 = �2 = 5 [msec],B = 10 [segments] andm = 1

[Kbytes] for parameters of the model shown in Fig. 1. The other parameters are set as

� = 2, � = 4 for TCP Vegas, andÆ = 3 for enhanced TCP Vegas. Figure 5 shows the

cwnd1–cwnd2 graph obtained from Fig. 4.

In Figs. 6 and 7, we show the heterogeneous case where the propagation delays of

the two connections are different. In simulation, we set� = 20 [Mbps],B = 10 [seg-

ments],�1 = 4 [msec],�2 = 8 [msec],m = 1 [Kbytes], and� = 2, � = 4, Æ = 3 for

parameters of TCP Vegas and enhanced TCP Vegas, and Connection 2 joins the network
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Figure 4. Simulation Results of homogeneous case.

at timet=1500 [msec]. We will explain the effect of propagation delay on the congestion

control mechanisms of TCP by using Figs. 6 and 7 and our analytical results.

4.2. TCP Tahoe

In TCP Tahoe, the change of the window size is cyclic as shown in Fig. 2(a) where

the single connection utilizes the link. It is also true when two connections with identical

propagation delays share the link (Fig. 4(a)) since segments from two connections are lost

at the end of the cycle. It is explained as follows. Suppose that both of two TCP senders

open the window at same speed in Congestion Avoidance Phase. Each connection incre-

ments its window size by one segment simultaneously, and injects a new segment into the

network. Finally, the sum of the window sizes of both connections becomes equal toWs,
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Figure 5.cwnd1–cwnd2 graph of homogeneous case.

the sum ofbandwidth–delay products of the link (We) and the buffer size at switch (B).

Then new segments from both connections are likely to be dropped at the switch buffer

because the sum of the window sizes exceeds the network capacity by two segments. It is

true that we treat a special case for the network configuration, but the problem described

in the above is inherent in TCP Tahoe.
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Figure 6. Simulation Results of heterogeneous case.

When propagation delays of two connections are different, on the other hand, the

above discussions never be directly applicable. However, we can confirm that even if two

connections have different propagation delays, the segment losses of both connections

are likely to occur simultaneously in Fig. 6(a). Therefore, in the analysis, we will assume

that segment losses of the two connections take place simultaneously.

We introduce the following notations. Cyclei starts at the time wheni� 1 th seg-

ment is lost, and terminates ati th segment loss.W i
1 andW i

2 are window sizes of Connec-

tions 1 and 2 wheni th segment of two connections are lost. Similarly,ssthi
1

andssthi
2

are defined asssth of cyclei for two connections, respectively. Let us assume that cyclei
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Figure 7.cwnd1–cwnd2 graph of heterogeneous case.

begins at timet = 0. From Eq.(2), we obtain;

ssthij =
W i�1

j

2
; (j = 1; 2) (7)

When segment loss occurs, the window size is reset to one segment (since fast retrans-
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mit is not used in TCP Tahoe). Then, the window size increases according to Slow Start

Phase untilcwndj(t) reachesssthij. Afterwards, the window size increases according to

Congestion Avoidance Phase as follows (see Eq.(1));

cwndj(t) =
(t�ssth t

i
j)

2�j
+ ssthij; (j = 1; 2) (8)

wheressthtij is the time when Slow Start Phase terminates, that is, whencwndj(t) reaches

ssthij. At the end of cyclei, i th segment loss takes place in both connections since the

sum of the window sizes of both connections reachesWs (defined in Eq.(7)), i.e.,

Ws = cwnd1(t
i
loss) + cwnd2(t

i
loss) (9)

We can obtaintiloss, the time wheni th segment loss occurs, from Eqs.(7) and (8) as fol-

lows;

tiloss=
�1 � �2
�1 + �2

Ws (10)

Finally,W i
j is obtained from Eqs.(7) through (10) as;

W i
j =

W i
j

2
+

1

�j

�1 � �2
2(�1 + �2)

Ws

=
1

�j

�1 � �2
2(�1 + �2)

Ws �
�
1

2

�i�1 1

�j

�1 � �2
2(�1 + �2)

Ws �W 1

j

!
(11)

The above result implies that the window sizes of both connections are exponentially con-

verged asi ! 1, and the converged value is in proportion to the inverse of the prop-

agation delays. It is then clear that if the propagation delays are equivalent, TCP Tahoe

provides fair service between connections. We can also see that the congestion control of

TCP Tahoe lacks in an ability to stabilize the window sizes in the sense that the window

size oscillates as a function of time as shown in Figs. 2(a), 4(a) and 6(a).

However, it is also observed that in the heterogeneous case of different propagation

delays, the window sizes of two connections become different in TCP Tahoe, and the

connection with longer propagation delay suffers from the small window size. This can

be observed in Figs. 6(a) and 7(a), in which Connection 2 with longer propagation delay

has a small window size during the simulation, and the network status point (cwnd1(t),

cwnd2(t)) is always lower than the ‘Fairness Line.’ One may think that the fairness mea-

sure should be defined by taking account of the propagation delays, and that it is natural

that the connection with the longer propagation delay achieves the less throughput. It

may be true, but our point is that in TCP Tahoe, the throughput is not proportional to the
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propagation delay. We introduceAi
j as the number of segments transmitted in cyclei

of the connectionj, andSj as throughput for the connectionj. That is, the following

relation holds;

Ai
j=t

i
loss (12)

Thus, by utilizing Eqs.(7) through (11), we have

Sj =
Ai
j

tiloss

=

R ti
loss

0
cwndj(t)dt

tiloss

=
3W i

j

4�j

By letting i!1, we have

Sj ! 3

�2j

�1 � �2
2(�1 + �2)

Ws (13)

That is, the throughput becomes proportional to the inverse of the square of the propaga-

tion delay in the heterogeneous case.

4.3. TCP Reno

As described in Section 3, the congestion control mechanism of TCP Reno is sim-

ilar to that of TCP Tahoe, except that TCP Reno has a Fast Recovery Phase to be able

to react the random segment loss quickly. That is, in the Fast Recovery Phase, the win-

dow size istemporarily inflated until non–duplicate ACK is received, and it is restored to

ssth. After that, the Congestion Avoidance Phase begins as in TCP Tahoe. Therefore, if

we ignore the temporary inflation of the window size in Fast Recovery Phase, TCP Reno

controls the window size as if Slow Start Phase were eliminated from the change of the

window size of TCP Tahoe. As a result, the transition of network status point (cwnd1(t),

cwnd2(t)) follows Eq.(11). That is, TCP Reno also has an ability to keep a fair service

among connections in the homogeneous case, but it cannot keep fair service among con-

nections in heterogeneous case, as in the case of TCP Tahoe. See Figs. 4(b) and 5(b) for

the homogeneous case and Figs. 6(b) and 7(b) for the heterogeneous case.
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4.4. TCP Vegas

In TCP Vegas, it is noticeable that the window sizes of both connections remains

constant at different values as shown in Figs. 4(c) and 6(c). It can also be observed in the

cwnd1–cwnd2 graph in Figs. 5(c) and 7(c) where the network status point (cwnd1(t),

cwnd2(t)) first moves from(W 1
1 ; 1) to (W 2

1 ;W
2
2 ), and is converged at that point. In this

subsection, we analytically deriveW 1
1 (the window size of Connection 1 when Connec-

tion 2 is activated), andW 2
1 , W 2

2 (converged values of window sizes of Connections 1

and 2) to make clear the characteristics of the congestion control mechanism of TCP Ve-

gas.

Let l1 andl2 be the mean numbers of segments queued in the switch buffer before

and after Connection 2 joins the network, respectively. Since the window size in TCP

Vegas converges to a fixed value in steady state,l1 andl2 should also be converged to

some values. We first consider the situation where only Connection 1 is active in the net-

work. When the window size of Connection 1 becomes stable, the following inequalities

should be satisfied from Eq.(3);

�

base rtt1
1

<
W 1

1

base rtt1
1

� W 1
1

rtt1
<

�

base rtt1
1

(14)

wherebase rtt1
1

is base rtt of Connection 1, being equal to the round trip time without

queueing delays at the switch buffer. That is,

base rtt11 = 2 � +
1

�
(15)

andrtt1 is the round trip time in steady state, i.e.,

rtt1 = 2 � +
l1 + 1

�
(16)

From Eqs.(15) and (16), Eq.(14) can be rewritten as;

f2 � �+ (l1 + 1)g �
l1

< W 1

1 < f2 � �+ (l1 + 1)g �

l1
(17)

W 1
1 can also be obtained by summing thebandwidth–delay products of the shared

link (2 � �) and the number of segments in the switch buffer (l1);

W 1

1 = 2 � �+ l1 (18)

By substituting Eq.(18) into Eq.(17), we simply have

� < l1 < �: (19)
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Also, Eq.(19) can be written by using Eq.(18) as

2 � �+ (�+ 1) < W 1

1 < 2 � �+ (� + 1) (20)

From the above equations, we observe that in steady state, the mean number of segments

in the switch buffer is kept stable between� and�, and the link bandwidth is always fully

utilized.

We next observe the TCP behavior after Connection 2 joins the network. When

Connection 2 starts to transmit segments into the network, the number of segments

queued in the switch buffer increases. Then the round trip time of Connection 1 increases,

and its window size is decreased to satisfy the condition that the window size should be

stable. See Eq.(3). Since all segments of both connections are served at the bottleneck

link with the bandwidth of� [segments/sec], the following equation is satisfied;

W 2
1

rtt1
+

W 2
2

rtt2
=� (21)

The window size of each connection changes according to Eq.(3) as follows;

�

base rtt1
<

W 2
1

base rtt1
� W 2

1

rtt1
<

�

base rtt1
(22)

�

base rtt2
<

W 2
2

base rtt2
� W 2

2

rtt2
<

�

base rtt2
(23)

wherertt1, rtt2, base rtt1, base rtt2 are Round Trip Time andbase rttof Connection 1

and Connection 2, respectively, and can be obtained as follows;

rtt1 = 2�1 +
l2
�

(24)

rtt2 = 2�2 +
l2
�

(25)

base rtt1 = 2�1 +
1

�
(26)

base rtt2 = 2�2 +
l1
�

(27)

By substituting Eqs.(24) from (27) into (22) (23), and after some manipulation, we have

(2�1�+ l2)
�

l2
< W 2

1 < (2�1�+ l2)
�

l2
(28)

(2�2�+ l2)
�

l2 � l1
< W 2

2 < (2�2�+ l2)
�

l2 � l1
(29)

Namely, network status point (cwnd1(t), cwnd2(t)) converges to the values satisfy-

ing Eqs.(28), (29), and (21). Furthermore, from the condition that network status point
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(cwnd1(t), cwnd2(t)) that satisfying Eqs.(28), (29), and (21) exists, we can determine

the range ofl2, the numbers of segments queued in the switch buffer after Connection 2

joins the network. It is obtained by solving Eq.(28) and (29) forl2 as follows;

3 +
p
5

2
� < l2 <

3 +
p
5

2
�

We can observe from Eqs.(28) and (29) that the window sizes of both connections

converge inalmost proportion to the propagation delay. It means that if the propagation

delays of connections are equivalent, the window sizes should become identical. How-

ever, it is also observed in Eqs.(28) and (29) thatW 2
1 andW 2

2 have someranges, and the

real convergence point is determined arbitrarily. The range of the convergence is depen-

dent on the congestion control algorithm of TCP Vegas itself, which is the condition that

the window size remains unchanged has a somerange as specified in (Eq.(3)).

There is another reason why TCP Vegas can not achieve fairness between connec-

tions. That is caused by the difference ofbase rtt’s of two connections (Eqs.(26) and

(27)) even in the homogeneous case with identical propagation delays. When Connec-

tion 2 joins the network, the switch buffer is occupied by several segments of Connec-

tion 1. Thus,base rtt of Connection 2 includes some buffering delay at the switch and

it becomes larger than that of Connection 1. Therefore, the window size of Connection 2

becomes lower to satisfy the second equation of Eq.(3). This cannot be avoided in TCP

Vegas if the number of segments at the switch buffer is not much changed in steady state.

The unfairness of TCP Vegas explained above was confirmed by comparing with

simulation. The results shown in Figs. 4(c) and 5(c) is one example, but by repeating the

simulation experiments, we observe that the values ofW 2

1

W 2

2

range from 1.03 to 1.58. On

the other hand, Eqs.(28) and (29)) show that the upper and lower values ofW 2

1

W 2

2

are 0.95

to 2.12.

On the other hand, the window size in the heterogeneous case becomes almost pro-

portional to the propagation delay of each connection as indicated by Eqs.(26) and (27).

Thus, the throughput defined as (window size)/(propagation delay) becomes identical,

and we may say that the fairness becomes better in the heterogeneous case. However,

the obtained throughput has some range dependent on the chosen parameters� and� in

TCP Vegas, which causes the unfairness between connections. It can also be confirmed

by Eqs.(26) and (27).

In summary, TCP Vegas can improve fairness between connections to some extent,

but there still be some unfairness due to therange of the convergence point. In the next
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subsection, we will explain our enhanced TCP Vegas, and show some analytic results to

confirm the effectiveness of our proposed method.

4.5. Enhanced TCP Vegas

Eq.(3) used in TCP Vegas indicates that if RTTs of the segments are stable, the win-

dow size remains unchanged. The range that the network is viewed as “stable” was de-

rived in the previous subsection. It is a fundamental problem of TCP Vegas, and our so-

lution is to eliminate the condition of unchanging the window size. The following al-

gorithm is used in our enhanced TCP Vegas toprevent the convergence of the window

size;

cwnd(t+ tA) =

(
cwnd(t) + 1; if diff < Æ

base rtt

cwnd(t)� 1; if Æ
base rtt

� diff
(30)

diff = cwnd(t)=base rtt� cwnd(t)=rtt

whereÆ is a some small constant value. The same algorithm can be obtained by setting

� = � in TCP Vegas (Eq.(3)), which clearly shows that the condition of unchanging the

window size is eliminated. Figure 2(d) shows a typical example of our enhanced Vegas

version. We can see from the figure that the window size is oscillated around the appro-

priate value. By using the algorithm above, we can overcome the unfairness problem

observed in TCP Vegas.

We now explain why it can achieve the fairness. The window size of each con-

nection oscillates as a function of time. The point around which the window sizes are

oscillated is determined as follows. From Eq.(30), we first have

cwnd

base rtt
� cwnd

rtt
=

Æ

base rtt
(31)

LetW 2
1 andW 2

2 be the central points of oscillations of the window sizes of Connections 1

and 2, respectively. By applying Eq.(31) to Connection 1 and Connection 2, the following

equations can be obtained;

W 2
1

base rtt1
� W 2

2

rtt1
=

Æ

base rtt1
(32)

W 2
2

base rtt2
� W 2

2

rtt2
=

Æ

base rtt2
(33)

wherertt1, rtt2, base rtt1 andbase rtt2 are determined from;

rtt1 = 2�1 +
l2
�

(34)
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rtt2 = 2�2 +
l2
�

(35)

base rtt1 = 2�1 +
1

�
(36)

base rtt2 = 2�2 +
1

�
(37)

Note that Eq.(37) is different from that of TCP Vegas (Eq.(27)). It is because our en-

hanced method simply prevents the convergence of the window size as shown in Eq.(30).

Then the window sizes of both connections are changed dynamically. It also leads to the

fluctuation of the number of segments at the switch buffer, and thusbase rtt’s of Con-

nection 1 and 2 become converged to the same value.

From Eq.(21), Eqs.(32) and (33) can be solved as follows;

W 2

1 = (2�1�+ l2)
Æ

l2
(38)

W 2

2 = (2�2�+ l2)
Æ

l2
(39)

Furthermore, in similarly to TCP Vegas, we can obtainl2 from Eqs.(21), (38) and (39);

l2 = 2Æ (40)

We note thatl2 in the above equation is a converged value, and actually the queue size

at the switch buffer is fluctuated in some range. However, there is a significant differ-

ence between TCP Vegas and enhanced TCP Vegas. In TCP Vegas, converged window

sizes of both connections (Eqs.(28) and (29)) may be different because it has therange

in the condition that the window size remains unchanged (Eq.(3)). On the other hand, in

enhanced TCP Vegas, it is avoided by oscillating the window size.

From Eqs.(38) and (39), we can confirm that the central point of oscillation be-

comes completely proportional to the propagation delay. It means that our enhanced

TCP Vegas can provide good fairness even in terms of throughput defined as (window

size)/(propagation delay). These results are quite different from those of TCP Vegas,

which sometimes fails in obtaining fairness between connections as having been de-

scribed in Subsection 4.4. Our enhanced TCP Vegas discards the ability of the stable

operation which is intended in the original TCP Vegas. However, the oscillation range of

the window size is small. The example can be seen in thecwnd1–cwnd2 graph (Figs. 5(d)

and 7(d)). The network status points (cwnd1(t), cwnd2(t)) oscillate around the ‘Fairness

Line’, and the range of oscillation falls between ‘Effectiveness Line’ and ‘Segment Loss

Line’. That is, in our enhanced version of TCP Vegas, the throughput can be kept high



20 Go Hasegawa et al. / Fairness and Stability of TCP

as in the original one, and the unfairness problem is resolved at the expense of thestable

operation of the window sizes.

5. Conclusion

In this paper, we have focused on stability and fairness properties of TCP through

an analytic approach and have made clear the basic characteristics of four versions of

TCP; TCP Tahoe, TCP Reno, TCP Vegas and our proposed enhanced TCP Vegas. We

have obtained the following results through analysis and simulation;

� Homogeneous case:

� TCP Tahoe and TCP Reno can provide the fairness between connections at the ex-

pense of stability and throughput.

� TCP Vegas can achieve higher throughput than TCP Tahoe and TCP Reno, but lacks

in fair share of the link.

� Enhanced TCP Vegas can improve fairness without throughput degradation. It is

due to fluctuated window sizes.

� Heterogeneous case:

� In TCP Tahoe and TCP Reno, the connection with longer propagation delays suffers

from very lower throughput.

� In TCP Vegas, fairness between connections can be improved to some extent. How-

ever, unfairness is not perfectly resolved in the heterogeneous case.

� Our enhanced TCP Vegas can achieve a good fairness between connections while

keeping high throughput at the expense of stability.

In the current work, we have only focused on the simple network topology, a single–

hop network with two connections. For future work, we need to study the more general

network topology, which has multi–hop connection between sender and receiver to in-

vestigate the effect of the number of congested links of the connections on the congestion

control mechanisms of various versions of TCP. More importantly, we have assumed that

TCP connections follow the pre-specified congestion control algorithm. In recent papers

such as [6,12], researchers focused on isolation ofill–behaved flows emitting segments

independently on the congestion level of the network to occupy the link bandwidth un-

fairly. The proposed scheduling algorithms at the switch can offer thefair service ac-

cording to the pre-determined weights of flows, but have a limit since incorporation of
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the propagation delays is not considered. We feel that our results can contribute to the

extension of the proposed method, but it requires a further research.

References

[1] W. R. Stevens,TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts: Addison-

Wesley, 1994.

[2] G. R. Wright and W. R. Stevens,TCP/IP Illustrated, Volume 2: The Implementation. Reading, Mas-

sachusetts: Addison-Wesley, 1995.

[3] XTP Home Page,http://www.ca.sandia.gov/xtp/xtp.html.

[4] R. Ahuja, S. Keshav, and H. Saran, “Design, implementation, and performance of a native mode atm

transport layer,”Proceedings of IEEE INFOCOM ’96, pp. 206–214, March 1996.

[5] J. C. Hoe, “Improving the start-up behavior of a congestion control scheme of TCP,”ACM SIGCOMM

Computer Communication Review, vol. 26, pp. 270–280, October 1996.

[6] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”IEEE/ACM

Transactions on Networking, vol. 1, pp. 397–413, August 1993.

[7] A. S. Tanenbaum,Computer Networks, 3rd edition. Upper Saddle Riverm New Jersey, 07458: Prentice

Hall, 1996.

[8] L. S. Brakmo, S. W.O’Malley, and L. L. Peterson, “TCP Vegas: New techniques for congestion detec-

tion and avoidance,”Proceedings of ACM SIGCOMM’94, pp. 24–35, October 1994.

[9] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion avoidance on a global internet,”

IEEE Jounal on Selected Areas in Communications, vol. 13, pp. 1465–1480, October 1995.

[10] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan, “Evaluation with TCP Vegas: Emulation and experiment,”

ACM SIGCOMM Computer Communications Review, vol. 25, pp. 185–195, August 1995.

[11] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for congestion avoidance

in computer networks,”Computer Networks and ISDN Systems, no. 17, pp. 1–14, 1989.

[12] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round robin,”IEEE/ACM Trans-

actions on Networking, vol. 4, pp. 375–385, June 1996.


