Scalable Automatic Buffer Tuning to Provide High
Performance and Fair Servicefor TCP Connections

Takahiro Matsuof GoHasegawai Masayuki Murataf

TDepartment of Informatics and Mathematical Science
Graduate School of Engineering Science, Osaka University
1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Phone: +81-6-6850-6616, Fax: +81-6-6850-6589
E-mail: {t-matuo, murata} @ics.es.osaka-u.ac.jp

tFaculty of Economics, Osaka University
1-7, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
Phone: +81-6-6850-5233
E-mail: hasegawa@econ.osaka-u.ac.jp

Abstract Although many research efforts have been devoted to the network conges-
tion against an increase of network traffic in the Internet, only afew discussions on the per-
formance improvement of the endhosts are recently made. In this paper, we propose a new
architecture, which is called Scalable Automatic Buffer Tuning (SABT), to provide high per-
formance and fair service for many TCP connections at the Internet endhosts. In SABT,
the sender host estimates ‘expected’ throughput of the TCP connections through the sim-
ple mathematical equations, and assign the send socket buffer to them according to the es-
timated throughput. If the socket buffer is short, the max-min fairness policy is utilized to
allocate the send socket buffer. Since SABT uses the measurement-based approach to esti-
mate the throughput, aninitial values of the buffer size cannot be determined. Thus, an initial
buffer size of the connection is determined by taking account of the characteri sticsof WWW
traffic. We confirm an effectiveness of our proposed a gorithm through both of a simulation
technique and an actual experimental system where we implement our algorithm.

1 Introduction

According to a rapid growth of the Internet users, many research efforts have been devoted
to how to avoid and dissolve the network congestion against an increase of network traffic.
On the other hand, only a few discussions on the performance improvement of the Internet
endhosts are recently made in spite of the projection that the bottleneck is now being shifted
from the network to endhosts. For example, busy WWW (World Wide Web) serversin the
current Internet receive hundreds of requests for document transfer every second at peak time.

Of course, the improvement of protocol processing on the endhosts is not a new subject.
Such an example can be found in [1] where the authors propose the ‘fbuf’ (fast buffer) ar-
chitecture, which shares the memory space between the system kernel and the user process
to avoid redundant memory copies during data exchanges. It is based on an observation that
memory copy isamain cause of the bottleneck at endhosts in TCP data transfer. However,
the past researches including the above fbuf do not consider the ‘fair’ treatment of connec-
tions, by which we can expect more performance improvement by the following reasons.
Suppose that a server host is sending TCP data to two clients of 64Kbps dial-up (say, user
A) and 100Mbps LAN (user B). If the server host assigns an equal size of the socket buffer
to both users, it is likely that the amount of the assigned buffer is too large for user A, and
too small for user B, because of the difference of capacities (more strictly, bandwidth-delay
products) of two connections. For an effective buffer usage for both users, a compromise on
buffer usage should be taken into account.

Another important examplethat requires‘fair’ buffer treatment can befoundin abusy In-
ternet WWW server, which accepts alarge number of TCP connectionswith different band-
widthsand roundtrip times (RTTs) at the sametime. In[2], the authorshave proposed abuffer
tuning algorithm called Automatic Buffer Tuning (ABT), which dynamically adjuststhe send

socket buffer size according to the change of the TCP sending window size of the connection.

However, it does not provide ‘fairness among connections because the throughput of TCP
connectionsis not proportional to the sending window size as shown in [3].

In this paper, we propose a novel architecture called Scalable Automatic Buffer Tuning
(SABT), to providehigh performance and fair servicefor many TCP connectionsat the sender
host. For this purpose, wefirst derive ‘expected’ throughput of TCP connections by an ana-
lytic approach. It is characterized by packet lossrate, RTT and RTO (Retransmission Time
Out) values of the connections, which can easily be monitored by the sender host. The send
socket buffer isthen assigned to each connection according to the expected throughput, with
consideration on a max-min fairness among connections. We validate the effectiveness of
our proposed mechanism through both of simulation and implementation experiments.

Another important factor that we should consider is how to determine an initial buffer
size of the connection. It cannot be determined a priori since the control parameters such as
the packet lossrate, RTT and RTO are not known at the connection setup time. One possible
approach is to take into account the characteristics of WWW traffic when our algorithm is
applied to the WWW server. Due to recent advancements of researches on Web traffic char-
acterization (see, e.g., [4]), theinitial buffer size can be determined based on those results
such that the server can send the whole document in one RTT if the document size issmall,
by which response times of the Web document retrieval can be much improved.

This paper is organized as follows. In Section 2, we first introduce the ABT agorithm
briefly for reference purpose, and propose our SABT algorithm. We evaluate the effective-
ness of our proposed algorithm through simulation experiments in Section 3, followed by
implementation experiments in Section 4. Finally, we present some concluding remarksin

Section 5.

2 Automatic Tuning of Send Socket Buffer

Asexplained in the previous section, when the sender host accepts multiple TCP connections
simultaneously, the send socket buffer size of the sender host must be assigned to the connec-
tions, by taking care of differences of the connections’ characteristics. In thissection, wefirst
introduce related researches on the buffer tuning, and point out several problems in Subsec-
tion 2.1. We next present our proposed algorithm, called Scalable Automatic Buffer Tuning
in Subsection 2.2.

2.1 Related Work; Automatic Buffer Tuning

In [2], the authors have proposed an “ Automatic Buffer Tuning” mechanism (referred to as
ABT in this paper), where the assigned buffer size of each TCP connectionis determined ac-
cordingto the current window size of the connection. That is, when the window size becomes
large, the sender host triesto assign more buffer to the connection. On the other hand, asthe
window size becomes small, it decreases the assigned buffer size.

When the total required buffer size of all TCP connections becomes larger than the send
socket buffer size prepared at the sender host, the send socket buffer is assigned to each con-
nection according to a max-min fairness policy. More specifically, the sender host first as-
signs the buffer equally to all TCP connections. Then, if there exists connections which do
not require large buffer, the excess buffer is re-assigned to connections which requires larger
buffer. Through this mechanism, it is expected to providedynamic and fair buffer assignment
by considering differences of TCP connections.

However, ABT has severa problems. It assigns the send socket buffer to each TCP con-
nection accordingtoits current window size at regular intervals. Therefore, when sender TCP
changesitswindow size suddenly dueto, e.g., packet |oss, the assigned buffer size sometimes

gets smaller than that the connection actually requires. 1t might be solved by setting the up-

date interval to a smaller value. In that case, however, the assigned buffer size is changed
too frequently, which causes the system instability. Furthermore, as the network bandwidth
becomes larger, the oscillation of the window size also becomes large, leading to alarge os-
cillation of the assigned buffer size.

Another problem existsin the max-min sharing policy adoptedin ABT. Supposethat three
TCP connections (connections 1, 2 and 3) are active, and the required buffer sizes calcul ated
from the window size of each connection are 20 [KBytes|, 200 [KBytes]|, and 800 [KBytes],
respectively. If the total size of the send socket buffer is 300 [KBytes], the sender host first
assigns 100 [KBytes] to each connection. Since connection 1 does not require such alarge
buffer, the sender re-assigns the excess buffer of 80 [KBytes| of connection 1 equally to con-
nections 2 and 3. Asaresult, the assigned buffer sizes of connections 2 and 3 become 140
[KBytes]. However, it must be better to assignthe excessbuffer proportionallyto the required
buffer size of connections 2 and 3. In this case, the assigned buffers become 116 [KBytes)
for connection 2 and 164 [KBytes] for connection 3 by a proportional re-assignment. This
assignment is more effective because the throughput improvement of connection 3 becomes
larger. The remaining problem isto estimate how much buffer each TCP connection actually
requires. ABT cannot re-assign the excess buffer proportionally because it determines the

buffer size only by the current window size of the connection.

2.2 Proposed Method; Scalable Automatic Buffer Tuning

Our proposed method called a* Scalable Automatic Buffer Tuning” (SABT) includesthefol-
lowing two mechanisms; the stable and fair buffer assignment and the improved transfer time

for small files.

221 Stableand Fair Buffer Assignment M echanism

One of undesirable features of ABT is the instability of the buffer assignment. It is because
ABT only observes the current window size of the connection, which oscillates largely due
to the congestion control mechanism of TCP. In the proposed method, on the other hand,
the sender host first estimates an ‘expected’ throughput of each TCP connection from three
parameters, and determines the required buffer size of the connection from the estimated
throughput, not from the current window size of TCP.

The estimation method of TCP throughput is based on the analysisresult of the previous
work [5]. In [5], the average throughput of the TCP connection is derived for the model,
where multiple connections with different input link bandwidths share the bottleneck router
employing the RED algorithm [6]. The following parameters are used to derive the average
throughput;

e p: packet dropping probability of the RED algorithm

e rtt: average value of RTT (Round Trip Time) of the TCP connection

e rto: average value of the retransmission timer of the TCP connection
In the analysis, an average window size of the TCP connection is first calculated from the
above three parameters. The average throughput is then obtained by considering the perfor-
mance degradation caused by TCP's retransmission timeout expiration. Theanaysisin[5]is
easily applied to our case, by viewing the packet dropping probability of the RED algorithm
as the observed packet loss rate.

The parameter set (p, rtt, and rto) can be obtained by the sender host asfollows. Rtt and
rto can be directly obtained from the sender TCP. The packet lossrate p can al so be estimated
from the number of successfully transmitted packets, and the number of lost packets detected
at the sender host via acknowledgement packets. A possible cause of the estimation error on
p isrelated to the stochastic nature of the packet losses since the analysisin [5] assumes the

random packet loss. Thus, we need thevalidationfor the case wherethe packet |osses occur at

6

thedrop-tail router, sincein that case, the packetstendsto be dropped in the bursty nature[6].
We will present results on this aspect in Section 3.
We denote the estimated throughput of connection i by p;. From 7;, we determine B;, the

required buffer size of connection ¢, as;

BZ' = EXTtti (1)

where rtt; is RTT of connection i. By this mechanism, it is expected to provide stable as-
signment of the send socket buffer to TCP connections, if the parameter set (p, rtt, and rto)
used in estimationisstable. In ABT, on the other hand, the assignment isinstable even when
three parameters are stable, since the window size oscillates more significantly regardless of
the stability of the parameters.

Asin ABT, our SABT also adopts the max-min fairness policy for re-assigning the ex-
cess buffer. Differently from the ABT algorithm, however, SABT employsthe proportional
re-assignment policy as explained in the previous subsection. That is, when the excess buffer
is re-assigned to connections which need more buffer, the buffer is re-assigned to connec-
tions in proportion to the required buffer size calculated from the analysis. Note that ABT
re-assigns the excess buffer equally, since it has no means to know the expected throughput

of the connections.

2.2.2 Improved Transfer Time for Small Files

Inthe proposed method, the sender estimatesthethroughput of each TCP connection from ob-
served parameters associated with that connection. Therefore, if the size of transmitted data
issmall, it isimpossible to obtain the accurate and reliable estimation. Especially when the
proposed mechanism is applied to the WWW server, this problem becomes an obstacle since

the Web documents are comparatively small. Note that it is reported in [4] that the average

size of Web documents at the several Web serversis under 10 [KBytes).

Therefore, aninitial setting of the send socket buffer size becomesimportant. Inthe pro-
posed mechanism, if acertain TCP connectionisgoing to transmit asmall file, the sender host
excludesit from the fair buffer assignment described above. Instead, the sender sets both of
theinitial window size and the send socket buffer size of the connection to the size of trans-
mitted fileitself. By this modification, it is expected that TCP connection transfersthefilein
oneRTT.

In our setting, if thefile sizeis smaller than 8 [KBytes], the sender host excludesit from
the fair assignment, since 80 % of WWW documentsis smaller than 8 [Kbytes] according to
[4]. Then, we can expect that the transfer time of small WWW documents can beimproved ,
and SABT providesstable and accurate assignment of the send socket buffer to the remaining

connections transmitting larger files.

3 Simulation Results

In this section, we present some simulation results using the network simulator ns [7]. We
compare the following three algorithmsin order to validate the effectiveness of our proposed
mechanism.
EQ: All of active TCP connections are assigned equal sizes of the send socket buffer.
ABT: The send socket buffer size isassigned according to the automati c buffer tuning algo-
rithm described in Subsection 2.1.
SABT: The sender host assigns the send socket buffer in accordance with the scalable auto-
matic buffer tuning algorithm described in Subsection 2.2.
In three algorithms, the buffer re-assignment is performed at every second.
In the simulation experiment, we conducted two cases for packet oss occurrence. In the

first case, packet | osstakes place with aconstant rate assuming that the router is equipped with

Receiver Hosts

= Er___m
155 Mbps] ,,,1,,,1.5Mbps] ; 7 10 Mbps] \;\E,,, .

1 [msec] 4 100 [mSEC]Routerl 1 [msec]
Sender Host 4/ - - \!
Buffer Size: B N =l \=—"
B [packets] / N= : i; : %
\ - /) | l1smbps) N \-
100 [msec] 10 Mbps] ="
Router2 p @
f_ 155 Mbps] -
S 1 [msec] 1 [msec] \-
R 10 Mbps] =
1 [msec] F?
155 Mb -
| 1subps) NS | |
100 [msec] N
Router3 r?*

Figure 1. Network Model for Simulation Experiment

the RED algorithm. It meansthat the packet losstakesplace randomly with given probability.
Such an assumption isvalidated by [3]. However, it istrue that random packet dropping isa
rather ideal case to our SABT since our method largely relies on adequate estimation of the
packet loss rate in determining the throughput of TCP connections. Hence, we also consider
the case of the drop-tail router where packet 1oss occurs by the buffer overflow at the router.
Inthiscase, wecan never expect random packet loss, and it tendsto occur in abursty fashion.
In this section, we only show results of the drop-tail router case dueto space limitation. The
effectiveness of the SABT algorithm is more apparent in the constant packet |oss case, due
to the reason above.

Figure 1 depicts the network model used for simulation experiments. The model consists
of asender host, 7 receiver hosts, 6 routers, and linksinterconnecting routers and sender/recei ver
hosts. 7 TCP connections are established at the sender host (connections 1 through 7). As
shown in the figure, connection 1 occupies router 1, connection 2 and 3 share router 2, and

the rest of connections 4 through 7 share router 3. The capacities of links between routers

areidentically set to be 1.5 [Mbps]|, and those of links between routers and the sender host,
and between routers and the receiver hosts are set to be 155 [Mbps] and 10 [Mbps], respec-
tively. Further, propagation delays of links between routers, and that between routers and
sender/receiver hosts are 100 [msec] and 1 [msec], respectively. In this simulation experi-
ment, connection ; starts sending packetsat timet = (i — 1) x 500 [sec]. The simulation
endsat 4,000 [sec]. Therefore, when seven connectionsjointhe network, theideal throughput
becomes 1.5[Mbps] for connection 1, 0.75[Mbps] for connections2 and 3, and 0.375[Mbps|
for connections 4 through 7.

Figure 2 shows the results for the throughput and assigned buffer size as a function of
time. We set the send socket buffer size B = 350 [packets]. As shown in Figures 2(a)
and 2(b), connections sharing router 3 (connections 4 through 7) receive unfair throughput
valuesin the EQ case, in spite of the fact that conditions of four connections are completely
identical. Perhaps, it is due to an accidental unfairness of the TCP congestion control algo-
rithm, whichiswell knownin theliterature. See, e.g., [8]. Figures 2(c) and 2(d) clearly show
that ABT cannot provide a stable buffer assignment. It is because ABT assignsthe buffer to
each TCP connection according to the current window size of the connection, which oscil-
lates dynamically due to an inherent nature of the TCP window mechanism. Therefore, the
assigned buffer sizesof connectionswhich do not need large buffer (connection 2 through 7 in
the current case) are often inflated, leading to the temporary decrease of the buffer assigned
to connections which need large buffer (connection 1). As aresult, the throughput of con-
nection 1 is often degraded. On the other hand, our proposed SABT keeps stable and fair
buffer assignment as shown in Figure 2(e), leading to fair treatment in terms of throughput
(Figure 2(f)).

Even when the buffer size is smaller, SABT keeps its effectiveness. Results are shown
in Figure 3, where we decrease the buffer size B to 200 [KBytes]. Figures 3(b) and 3(d)

show that EQ and ABT mechani sms cannot provide fairness among connections. In particu-

10

350

§ #7
9 300 | 1 L 1
=" #6| 8
() P24 10 I ey Qo
SO Y I T #5| =
D200 1 5
£ 2
3 150 r rg,,
E 100 ¢ E
2 50 ¢
[}
(]
< 0 ! ! ! !
0 1000 2000 3000 4000 5000
Time [sec]
(a) EQ Case: Changes of Assigned Buffer Size
T 30 [F A2 73
§ 300 r =
— Q.
g 20 s
D | =
N 200 =
£ 150 ¢ £
:
§ 100 E
2 50 +
[9]
(%]
< O L L
0 1000 2000 3000 4000 5000
Time [sec]
(c) ABT Case: Changes of Assigned Buffer Size
= 350
Q
¥4
§ 300 r -
E 250 | §
9 200 + =
3 2
E 150 ¢ ?
2 50 1
3 #1
< 0 ! ! ! !
0 1000 2000 3000 4000 5000
Time [sec]

(e) SABT Case: Changes of Assigned Buffer Size

14 W ‘ ‘ #1

1t | A
0.8 | ‘ #2,43
0.6 | '
0.4 |
0.2 |

O J‘ 1 “ i 1

0 1000 2000 3000 4000 5000

Time [sec]

(b) EQ Case: Changes of Throughput

Yy

1.4 ;
1.2 }
Ly #1
0.8 #2 #3
0.6 | 1 L 1
04 L HAHSHOHT
02} :
0 1000 2000 3000 4000 5000
Time [sec]
(d) ABT Case: Changes of Throughput
‘ #1
el 3

04 | T s e
02| o
0 i | : H 1
0 1000 2000 3000 4000 5000
Time [sec]
(f) SABT Case: Changes of Throughput

Figure 2: Comparative Results of Simulation Experiment: B = 350 [packets]

lar, throughput of connection 1 issignificantly degraded in those cases, and connections con-

nected to router 3 receive different throughput values. It is because in assigning the buffer,

11

= 200 = T ==y] T T
g : #7 1.4 ; :
N T N — _ |
S50 | e #we| @ 12 3 "
R N R S E S 1t } 1
o | #5 =
E 100 3 0.8 r b : #2,#3
o S 06 [— #A #5
8 bt gt At A
K . = 04} .
g £ S
G 02t v st i)
7] : :
< 0 ! ! ! ! 0 I i |
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time [sec] Time [sec]

(a) EQ Case: Changes of Assigned Buffer Size

(b) EQ Case: Changes of Throughput

B 200 mT w73 #a w5 w6l AT

S P mmﬁmﬂmwwwmm

o - i 0

E 150 L ‘ : é.

7] ‘ . =

% 100 | = 2

® 50 £

< =

% 0.2 r #5,#6 ,#7 1

(%] : ;

< O L L L L 0 L i L

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time [sec] Time [sec]

(c) ABT Case: Changes of Assigned Buffer Size

(d) ABT Case: Changes of Throughput

= 200

Q

4

Q

S @

E 150 r é.

% =

o 100 2

5 S L i

g 3

§ 50 f = 0.4t

2 02

%] : i :

< 0 ! ! ! ! 0 i 1 ! !

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time [sec] Time [sec]

(e) SABT Case: Changes of Assigned Buffer Size

(f) SABT Case: Changes of Throughput

Figure 3: Comparative Results of Simulation Experiment: B = 200 [packets]

the EQ method does not take care of the connections' characteristicsat all. See Figure 3(a).

It is also true for the ABT mechanism (Figure 3(c)). It is mainly due to the oscillation of

12

the assigned buffer to each connection as shown in Figures 3(c). From the figure, it isalso
verified that ABT’s re-assignment algorithm, which equally re-assigns the excess buffer to
connections, does not work well. On the other hand, in the SABT algorithm, throughput of
connection 1 iskept to be ahigh value, and much better fairness can beachieved (Figures 3(e)
and 3(f)). Note that a dlight difference of the throughput values of connections 2 and 3 (and
connections 4 through 7) is due to an estimation error of the required buffer sizes. Inthe case
of thedrop-tail router, the parameters (p, rtt, and rto) observed for the throughput estimation
changes more largely than the constant packet |oss rate case because of the bursty nature of

packet |osses, leading to the difference of the assigned buffer size.

4 Implementation Experiments

In this section, we present the results obtained by our experimental system. Weimplemented
EQ, ABT and SABT mechanismson Intel Pentium-111 700 [MHZz] PC running FreeBSD 2.2.8,
and the two machines are directly connected. Through the experiments, we focus on the fol-
lowing three subjects;

1. fair buffer assignment among different connections

2. scalahility against the number of connections

3. improvement of transfer time for small files

4.1 Experiment 1. Fair Buffer Assgnment among Different Connec-

tions

We first evaluate the fairness property of three buffer assignment algorithms. In this exper-
iment, we consider the situation where three TCP connections are established at the sender
host through the 622 [Mbps] MAPOS (Multiple AccessProtocol Over SONET/SDH) [9] link.

Three connections have different packet loss rates; 0.005 for connection 1, 0.01 for connec-

13

Sender Host Connection 1 : packet loss rate 0.005 Receiver Host

Connection 2 : packet loss rate 0.01

Connection 3 : packet loss rate 0.02

| = MAPOS (622Mbps)
Equal / ABT / SABT

Figure 4. Network Environment for Experiment 1

tion 2, and 0.02 for connection 3, as shownin Figure 4. In the experiment, packets are inten-
tionally dropped at thereceiver host. Note that with those packet lossrates, three connections
can achieve throughput values of about 55, 90, and 220 [Mbps], respectively, if an enough
amount of the send socket buffer is assigned to each of connections.

Figure 5 compares the throughput values of three connections and total throughput. The
horizontal axisis thetotal size of the send socket buffer. In the EQ case (Figure 5(a)), three
connections can achieve their maximum throughputs when the total buffer sizeislarger than
240 [KBytes|, while ABT and SABT need only about 200 [KBytes] and 170 [KBytes], re-
spectively. It is due to the same reason explained in Section 3. Connections 2 and 3 do not
need as much buffer size as connection 1 does, but the EQ algorithm cannot re-allocate the
excess buffer of connections 2 and 3to connection 1. On the contrary, ABT and SABT algo-
rithmswork adequately for the buffer assignment.

We look at results of around 120 [KBytes] of the total buffer sizein the figure. By com-
paring ABT and SABT agorithms, itisclear that SABT can provide much higher throughput
for connection 1. The differenceis dueto re-assignment methods of excess buffer to connec-
tions. Inthe ABT algorithm, the excess buffer of connection 3 isre-assigned to connections 1
and 2 equally. Then, only connection 3 is assigned a sufficient size of the buffer while con-
nections 1 and 2 need more buffer. On the other hand, SABT re-assigns the excess buffer in
proportion to the required buffer size of connections1 and 2. Accordingly, SABT givesmore

buffer to connection 1 than connection 2 because the required buffer size of connection 1is

14

400 T T T T T T T T T 400 T T T T T T T T T

350 [Total | _ 350 o oial
2] / [7))(/x"
é- 300 + %Xx 1 é- 300 X%x
= 250 1 porweo” Connectiont| £ 290 | i Connection1]
8‘ 200 ¢ x—/—x—-—x/ T g_ 200 r X *-- R A
= / < ’/
g’ 150 | S * 1 g’ 150 oK
= 100 | < w7 Connection2] =100 | Connection2]
[kKB 8 Rl [Ea =] = X %8 B B o B G B B i
g o - mm-a | L . 7 Connection3|
S0 | ﬁ"ff,/"’ﬂ”"*" " Connection3 50 T W gy m g W
0 ./1 1 1 1 1 1 1 1 1 0 iI_H 1 1 1 1 1 1 1 1
80 100 120 140 160 180 200 220 240 260 280 80 100 120 140 160 180 200 220 240 260 280
Total Buffer Size [KBytes] Total Buffer Size [KBytes]
(a) EQ Case (b) ABT Case
400 T T T T T T T ;(777777 Y’X
350 | e Total |
o ok
é_ 300 x,,‘—x/ R
= 250 ¢ Connection1]|
3 200 | e R
Q150 [;
g 100 + ok Cogneﬂctionz
l— o = =] = =3 =] =} = D—/ii—li—.‘—ﬂ
50 ¢ E? o R A nection3
0 L L L L L L L L L

80 100 120 140 160 180 200 220 240 260 280
Total Buffer Size [KBytes]

(c) SABT Case

Figure 5: Fairness among Three Connections

larger than that of connection 2. Consequently, connection 1 can achieve higher throughput
at expense of small throughput degradation of connection 2. Asaresult, thetotal throughput
of SABT is highest among three algorithms regardless of the total buffer size as shown in
Figure5.

We next a present time—-dependent behavior of the buffer size assigned to each of three
connections in Figure 6. In this experiment, connections 1, 2, and 3 start packet transmis-
sion at time 0 [sec], 10 [sec], and 20 [sec], respectively. Here, we set the total buffer size
to be 256 [KBytes]. In ABT (Figure 6(a)), the assigned buffer sizes are heavily oscillated

becausethe ABT algorithm adapts the buffer assignment according to the window size. An-

15

~— 300000 T T T N T T T ~— 300000 T T T N T T T
2 Connection 1 - o Connection 1 -
S i Connection 2 o S i Connection 2 =
@, 25000 ¥ Connection 3 = @ 250000 | Connection 3 ---=---
& 200000 | & 200000 |
N : [}
g 150000 | | & 150000 f
= | z
< 100000 | < 100000 f
Q Qo
c c
.2 50000 r 2 50000 r
%] [9]
(%) ! (7] i
< o 1 1 1 1 1 < 0 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time [sec] Time [sec]
(8) ABT Case (b) SABT Case

Figure 6: Changes of Assigned Buffer Sizes

other and more important reason is that when retransmission timeout expiration occurs at a
certain connection, that connection resetsthe window sizeto 1 [packet] according to the TCP
retransmission mechanism. Then, the assigned buffer size of that connection becomes very
low. Once the assigned buffer gets small, the connection cannot inflate its window size dur-
ing awhile because of the throttled buffer size. It isthe reason why the assigned buffer size
iskept low in the ABT agorithm. On the other hand, SABT can provide the stable and fair
buffer assignment as shown in Figure 6(b). It brings high throughput to each TCP connection

as having been shown in Figure 5(c).

4.2 Experiment 2: Scalability against the Number of Connections

We next turn our attention to the scalability of the buffer assignment algorithms against the
number of connections. Figure 7 depictsthe experimental setting for this purpose. One TCP
connection is established using the MAPOS link (which is referred to as MAPOS connection
below). The several numbers of TCP connections are simultaneously established through

the Ethernet link (Ethernet connections). By this experiment, we investigate the effect of the

16

Sender Host

Equal / ABT / SABT

100Mbps

Ethernet connection N

Ethernet connection 1

622Mbps

MAPOS connection

Receiver Host

Figure 7: Network Environment for Experiment 2

Throughput [Mbps]

300

250 1w
200
150
100 |
50 |

0

16KB

. - .,,,,!::':i!:i‘:‘_f’f::‘:.—'17,-'77?—7.771_{,,,

O 2 4 6 8

10 12 14
Number of Ethernet Connections

16

Figure 8: Throughput of MAPOS Connection vs. the Number of Ethernet Connections

number of Ethernet connections on the performance of the MAPOS connection.

Figure 8 shows the throughput values of the MAPOS connection dependent on the num-
ber of Ethernet connections. In addition to the result of EQ, ABT and SABT agorithms, we
also present the results for the cases where the constant size (16 [KBytes] or 64 [KBytes])
of the send socket buffer is assigned to each TCP connection. Such aconstant assignment is
adefault mechanism of the current TCP/IP implementation in major operating systems. Re-
sultsare plotted in the figure with labels “ 16KB” and “64KB.” In thisfigure, we set the total
of the send socket buffer to 256 [KBytes]. Therefore, if we assign the constant buffer size of

64 [Kbytes] to each TCP connection, the sender allows up to four connections at the same

time.

We can make several important observations from this figure. First, we can see that the

constant assignment algorithm, which iswidely employed in the current OS, has drawbacks.

17

If 16 [KBYytes] send socket buffer isassigned to each TCP connection, the MAPOS connec-
tion suffers from very low throughput because it is too small for the 622 [Mbps] MAPOS
link. When each connection isgiven 64 [KBytes] buffer size, on the other hand, thethrough-
put of the MAPOS connection becomes considerably high as shown in Figure 8. However,
the number of connections which can be simultaneously established is severely limited.

In the EQ a gorithm, when the number of Ethernet connections exceedsfour, the through-
put of the M APOS connection issuddenly decreased to about 11 [Mbps]. It isbecausethe EQ
algorithm does not distinguish the M APOS connection and Ethernet connections, and assigns
an equal size of the send socket buffer to all connections. Therefore, as the number of Ether-
net connectionsisincreased, the assigned buffer size to the MAPOS connection is decreased,
leading to throughput degradati on of the MAPQOS connection.

When we employ the ABT or SABT agorithm, the throughput degradation of the MA-
POS connection can be limited even when the number of Ethernet connectionsisincreased.
However, when the number of Ethernet connections is beyond twelve, throughput values
of ABT and SABT agorithms becomes distinguishable as shown in Figure 8. It is again
caused by theinstability of the assigned buffer size and by the poor re-assignment algorithm
of ABT, as having been explained in the previous subsection. Even inthe SABT algorithm,
thethroughput of the MAPOS connection isslightly degraded by the larger number of Ether-
net connections. It is because the total of the required buffer size of Ethernet connectionsis
increased, Even though the required buffer of Ethernet connectionsissmall. Then, the buffer
assigned to the MAPOS connection is decreased because the excess buffer becomes small.
However, the degree of the throughput degradation of the MAPOS connection can be limited
inthe SABT algorithm.

18

Web Server : Apache

HTTP requests and response

Client : Webstone

Ethernet (100Mbps)

~ Hub

Delay = 0.8ms

Figure 9: Network Environment for Experiment 3

Responce Time [sec]

0.2

0.18 r
0.16 |
0.14 r

012 7,,(,,/.,/:7, -

0.1

Original (without SABT)

Document Size [KByte]

100

Figure 10: Response Time vs. Document Size

4.3 Experiment 3. Improvement of Transfer Time of Small Files

We last evaluate the effectiveness of our algorithm to improve transfer times of small files,
which was explained in Subsection 2.2.2. The experimental environment is depicted in Fig-
ure 9. We implement the SABT algorithm on the Web server host, running apache WWW
server version 1.3.3[10]. Onthe client host, we use Webstone [11], a benchmark tool to au-
tomatically send the document transfer requests to the server host and to obtain the several
statisticsincluding the document transfer time. We set the distribution of requested document
sizeaccording to theresultsin [4], which isdrawn by analyzing thelog at the Web site. Then,
the client randomly chooses the size of the requested document according to the prescribed

probability distribution. The propagation delay between the server and client hosts is about

0.8 [msec].

19

Figure 10 shows the average response time of the document transfer requests against the
document size. Here, the response time is defined as the time duration from when the client
transmits the document transfer request to the time when the client receives the requested
document. In the figure, we plot the results of the SABT algorithm and the original mecha-
nism. By the original mechanism, we mean that no buffer assignment policy is utilized and
a constant value of the buffer size (16 [KBytes]) is assigned to the connection. We can see
from the figure that when the document sizeis smaller than 8 [KBytes|, the response time of
SABT becomes smaller than the original mechanism as expected. That is, the SABT algo-
rithm sets the initial window size and the buffer size of the connection to be the size of the
requested document if the document size issmaller than 8 [KBytes]. Then, such connections
can transfer thefile in one RTT, leading to an improvement of the transfer time. Therefore,
we can expect that as the propagation delay between the server and the client hosts becomes
large, the effect on reduction of the document transfer time also gets large. Also, Figure 10
clearly showsthat SABT agorithm can reduce transmission time of small files, without any

increase of transmission times of largefiles.

5 Conclusion

In this paper, we have proposed SABT (Scalable Automatic Buffer Tuning), a novel archi-
tecture for assigning the send socket buffer of the busy Internet server to TCP connections
with different characteristics. In SABT, the “expected” throughput of each TCP connection
isderived from three parameters, which can beeasily estimated at the sender host. Thesender
host then assigns the buffer to the connections according to the estimated throughput, taking
care of the max-min fairness among active TCP connections. Further, we have proposed how
to determinetheinitia buffer size and the initial window size of TCP connections, according

to thetypical distribution of the WWW document size. We have confirmed the effectiveness

20

of SABT agorithm through both of simulation and implementation experiments, and have

shown that SABT can assign the send socket buffer to each TCP connection in afair and ef-

fectiveway than ABT (Automatic Buffer Tuning) and other algorithms.

References

[1]

[5]

[6]

[9]

[10]
[11]

P. Druschel and L. L. Peterson, “ Fbufs. ahigh-bandwidth cross-domaintransfer facility,” inPro-
ceedingsof the Fourteenth ACM sympos umon Operating SystemsPrinciples, pp. 189202, De-
cember 1993.

J. Semke, J. Mahdavi, and M. Mathis, “ Automatic TCP buffer tuning,” in Proceedings of ACM
S GCOMM’ 98, pp. 315-323, August 1998.

J. Padhye, V. Firoiu, D. Towdey, and J. Kurose, “Modeling TCP throughput: asimple model and
itsempirical validation,” in Proceedings of ACM SSIGCOMM'’ 98, pp. 303-314, August 1998.

M. Nabe, M. Murata, and H. Miyahara, “Analysis and modeling of world wide web traffic for
capacity dimensioning of internet access lines,” Performance Evaluation, vol. 34, pp. 249-271,
December 1999.

T. Matsuo, G. Hasegawa, M. Murata, and H. Miyahara, “Comparisons of packet scheduling al-
gorithmsfor fair serviceamong connections,” in Proceedingsof I nternet\Workshop’ 99, pp. 193—
200, February 1999.

S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”
|IEEE/ACM Transactions on Networking, vol. 1, pp. 397-413, August 1993.

Network Simulator - ns (version 2), available from ht t p: // ww»- mash. cs. ber kel ey.
edu/ ns/.

S. FHoyd and V. Jacobson, “ On traffic phase effects in packet-switched gateways,” Inter network-
ing: Research and Experience, vol. 3, pp. 397-413, August 1992.

K. Murakami and M. Maruyama, “MAPOS - multiple access protocol over SONET/SDH, ver-
sion 1,” Request for Comments 2171, June 1997.

Apache Home Page, available from ht t p: // ww. apache. or g/ .

Silicon Graphics Inc., “WebStone: World wide web server benchmarking,” available from
http://vww sgi.com’ Product s/ WbFORCE/ Resour ces/ res_webst one.
ht m , 1996.

21

