
An Approach for Heterogeneous Video Multicast Using
Active Networking

Héctor Akamine, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

Department of Informatics and Mathematical Science
Graduate School of Engineering Science, Osaka University
1–3 Machikaneyama, Toyonaka, Osaka 560–8531, Japan

Tel: +81–6–6850–6588 Fax: +81–6–6850–6589
akamine@ics.es.osaka-u.ac.jp

Abstract. We present a framework for heterogeneous video multicasting, con-
sidering an active network in which active nodes can filter the video stream to
satisfy different quality requests. As a part of this approach, we propose a heuris-
tic algorithm for the construction of a multicast distribution tree that appropriately
chooses the active nodes at which filtering is performed with the aim of, for ex-
ample, minimizing the total required bandwidth. We evaluate the performance of
our algorithm and compare it against two other approaches: simulcast and layered
encoded transmission. Through simulation experiments, we show that a larger
number of simultaneous multicast sessions can be set up with active filtering.

Keywords: heterogeneous multicast, active networking, video filtering

1 Introduction

Heterogeneous multicasting of video is a natural candidate for enjoying the benefits
of active networking. At video filtering nodes, new streams of lower qualities can be
derived from the received ones, and hence we become able to satisfy diverse qual-
ity requirements. Alternatives to dealing with heterogeneous quality requests for video
multicasting include simulcast and distribution of layered encoded video [1], that have
the advantage of being able to be used in the actual network infrastructure, but with ex-
cessive use of network resources. Active filtering seeks to reduce the use of the required
bandwidth choosing the location of filtering nodes appropriately, with the compromise
of requiring processing overhead at some nodes.

Research into filtering by Yeadon et al. [2] and Pasquale et al. [3] predates active
networking research, but propose a filtering propagation mechanism to vary the location
where filtering occurs according to the requirements of downstream clients. AMnet
[4] proposes a model and an implementation for providing heterogeneous multicast
services using active networking. According to this approach, a hierarchy of multicast
groups is formed, in which some active nodes that act as receivers in a multicast group
become roots in other multicast groups, but it is not explained how the multicast groups
are conformed and how the root senders of each multicast group are elected.

In this work we aim at two objectives. First, we give a framework for heterogeneous
video multicasting, considering a network in which active nodes can perform filtering

of the video stream to generate lower quality ones to satisfy requests of downstream
nodes. In our framework, we first collect all the session clients’ requests, and use this
information to form a hierarchy of multicast groups, where the top level group root is
the video server. The members of this group are the clients which requested the highest
quality video, and one or some active nodes which filter the video stream, producing one
with lower quality. These active nodes become roots of other multicast groups to satisfy
the requirements of other clients. Analogously, these new multicast groups can have
one or some active nodes as members that become roots of even lower level groups.
Second, we propose and evaluate an algorithm to efficiently elect the roots of the mul-
ticast groups. The effectiveness of active filtering depends on the topology of the video
distribution tree, but to our knowledge no previous work has discussed this issue.

The rest of this paper is organized as follows: Section 2 describes our framework
for multicasting video using active node filtering; Section 3 gives the details of the
algorithm for electing an appropriate multicast distribution tree; Section 4 evaluates
its performance, comparing it with other approaches for distributing video; Section 5
concludes our work.

2 A Framework for Heterogeneous Video Multicasting
Applications

2.1 Assumptions about the Network

We assume a network in which some of the nodes are active. A proposed framework
for active networks [5] presents a structure for active nodes, which is divided into three
major components: theNode Operating System (NodeOS), which allocates the node
resources such as link bandwidth, CPU cycles and storage; theExecution Environments
(EEs), each one of which implements a virtual machine that interprets active packets
that arrive at the node; and theActive Applications (AAs), which program the virtual
machine provided by an EE to provide an end-to-end service. End systems that host
end-user applications are also considered as active nodes having the same structure.
This framework also defines anActive Network Encapsulation Protocol (ANEP) header,
which must be included in each active packet to distinguish to which EE it must be sent
to be processed. Legacy (non-active) traffic whose packets don’t include the ANEP
header must also be supported by active nodes, and in this case they act as conventional
nodes.

Active nodes differ from conventional nodes in that they have memory and pro-
cessing resources that can be used by end users to customize the network behavior. We
assume that AAs can leave state in the active nodes when necessary, i.e., put values or
identifiers that will be used by subsequent packets of the same application.

Code that runs in an active node can be classified into trusted and untrusted. We
call trusted code to the programs whose whose execution is previously known to be
safe, i.e., will not harm the node. We can consider them as modules that enhance the
node functionality, with few restrictions in the use of node resources. On the other hand,
the execution ofuntrusted code must be enforced to remain between some limits (i.e.,
restricting the API it can use, limiting its size, the time and memory resources it can

consume.) It is usually executed through an interpreter to enforce security checking,
slowing down its execution.

Some existing implementations make this distinction. SwitchWare [6] divides code
betweenactive packets andactive extensions, active packets replace traditional packets
and contain data and code but with limited functionality, and they are used for inter-node
communication, while active extensions can be dynamically loaded to give nodes added
functionality. ANTS [7] usesextensions to allow the existence of code with privileges
or whose size is too large to be transferred using its capsule-based code distribution
mechanism.

Video filtering code, excepting the simplest filter types, is relatively large, resource
consuming, and requires fast execution, and is not likely to fit into the limitations of un-
trusted code. Handling the filter programs as trusted modules, we can use the advantage
that video streams have a relatively large number of packets that require the same type
of processing, by preloading the filtering code to work over the entire stream. Handling
the code as trusted can also let us optimize it for faster execution.

We assume that the active network has mechanisms for loading trusted code into
the nodes (e.g., trusted code servers from which it can be transferred.) We don’t discuss
security issues in this paper.

In contrast, code used for protocol signaling is used mainly for leaving soft-state in
or getting information from active nodes, and can fulfill its purpose running within the
restrictions of untrusted code.

To construct the video distribution tree appropriately, the algorithm should have in-
formation on the network. Since active nodes have the functionality of conventional
nodes and support non-active traffic, we assume that they communicate with conven-
tional nodes using standard network layer protocols such as OSPF [8], in order to dis-
cover the network topology. Similarly, it could be necessary to consider a signaling
protocol between active nodes in order to exchange information exclusive to them. Due
to security concerns, the information that active nodes exchange using this must be lim-
ited. We assume that such kind of protocol already exists and it lets an active node to
“discover” other active nodes in the network and query some basic information such as
the EEs running on them.

2.2 Sketch of the Application

Our approach for heterogeneous video multicasting considers filtering at some properly
located active nodes. The video server is required to produce and send the video stream
of the highest quality among all the clients’ requests. Then it is transcoded to a lower
quality at one or more intermediate active nodes to, for example, fit to the available
bandwidth of downstream links. Since the distribution of the video streams with dif-
ferent qualities is done using current multicast protocols, when the video stream needs
such transformation, the designated active node first subscribes to the corresponding
multicast group to receive the stream to transform. Then it filters/transcodes the stream,
and becomes root of a new multicast group of which the clients requesting the trans-
formed video stream are members. We can re-filter an already filtered video stream
in order to obtain another one with lower quality, and hence a hierarchy of multicast

C

S

AN

C

server

active node

client

multicast group

S

C C AN

C C AN

C C

AN q2 (<q1)

q1 (highest quality)

q3 (<q2)

q4 (<q3)

Fig. 1. Example of a logical topology

multicast
group

multicast
group

multicast
group

active
network

network
layer

multicast
(or active
multicast)

handling of heterogeneous multicast

Fig. 2. Realization of heterogeneous multicast

groups can be conceived. This idea was pioneered in AMnet [4]. Fig. 1 depicts this
approach.

Each multicast group in the hierarchy is constituted using network layer multicast
(i.e., IP multicast). Those groups are “glued” and ordered hierarchically using a proto-
col implemented for the active network. It can also be possible to have active multicast
protocols that replace network layer multicast in some groups, but similarly the inter-
action between multicast groups is controlled by an upper layer active protocol. This is
shown in Fig. 2.

Yeadon et al. [2] presented some different approaches for filtering MPEG video
streams. The simplest method for rate reduction is mere picture discarding, which con-
sists on eliminating progressively B, P and I pictures. This approach is of limited appli-
cability, since it only allows the reduction of bandwidth modifying the frame rate. Be-
yond picture discarding, other approaches include partial decoding and re-encoding of
the video streams. For example, low-pass filters involve discarding the high frequency
DCT coefficients, and requantization filters increase the value of the quantization fac-
tor to increase the number of zero DCT coefficients. They implemented those filters
for MPEG-1 video streams, and found that although end-to-end delay and jitter is in-
creased, they are feasible for continuous media streams. Here we do not specify which
filtering approach to use, and assume that any one is usable. Nevertheless, it is neces-
sary to consider that depending on the complexity, some filters could not be possible to
implement or could introduce non-negligible delays at the active nodes.

We now describe the components for an application that performs heterogeneous
video multicast employing filtering. We schematized it in Fig. 3.

1. Session announcement. The server uses a well-known multicast address to inform
the possible clients about the session contents. Information includes the available
qualities and required amount of resources. The protocol used to send these mes-
sages can be similar to the SAP protocol [9] used in the MBONE.

2. Session subscription. Each of the clients that wants to participate in the session
sends a request to the server containing the desired quality parameters. The quality

multicast group info.

joins multicast
group

client

data
transmission
(to group members)

reception stats.
report
(to group root)

for node set up
signaling
server−nodecompleted or

node set up

rejected

refresh
periodic

messages

subscription (QoS parameters)

server active node client

multicast group info

filtering parameters,

ACK

announcement

subscription

server−client
signaling

session announcement

and

video

filtered video

reception stats.

reception stats.aggregated

ACK (NACK)

refresh

Fig. 3. Signaling required for the proposed framework

requested by the client reflects not only the user’s preference on the perceived video
quality but also limitations on its available resources [10]. In the algorithm in Sec-
tion 3, we assume that quality corresponds to one QoS dimension for simplicity,
but it is possible to consider more parameters, e.g., quantization scale and frame
rate.

3. Derivation of the distribution tree. After the requests are collected, the server de-
fines the conformation of the multicast groups and the active nodes that are going to
perform filtering considering the network condition, i.e., topology, resource avail-
ability and clients’ requests. The calculation algorithm is explained and evaluated
in the following sections.

4. Set up of filtering nodes. As explained before, we assume filtering code to be
preloaded prior to sending the video stream. We require a signaling procedure to
inform the designated nodes that they are roots of multicast groups and to load the
required filtering program. It is possible that node set up fails due for example to

insufficient resources, and in this case, we must go back to the previous step and
choose a new node and therefore a different distribution tree.
For node set up, the server must send the following information:

– Multicast address as receiver: the active node receives the video data to be
filtered as a member of this multicast group.

– Multicast address as sender: the active node distributes the filtered video data
using this multicast address.

– Filtering parameters: the sender sends a reference to the required code, and the
required parameters, e.g., the quantization scale in a requantization filter. As
explained before, a designated filtering node must pre-load the filtering pro-
gram before the start of the video transmission, set up fails if it is not able to
do so.

We assume the use of soft state, it means that after set up is done, it is necessary to
send “ refresh” messages periodically to maintain the node waiting for packets to be
processed by the filtering code. If no refresh messages are sent, it is assumed that
filtering is no longer needed and the node releases the reserved resources.

5. Client subscription to the multicast group. We are assuming to use the existing IP
multicast protocols, such as IGMP for client-router communication, and DVMRP
and MOSPF between routers [11]. IP multicast requires each client to join a mul-
ticast group specifying the group IP address. In our approach, the sender informs
each client of the IP addresses of the multicast groups which it should subscribe.
On receiving the multicast group address, the client performs the corresponding
subscription.

6. Data transmission and feedback. The server multicasts the video stream of the high-
est quality to requesting clients and active nodes which filter it to get the lower
quality streams.
Although not discussed in detail in this work, the nature of best-effort networks
makes necessary to monitor the reception conditions of the clients, since usable
bandwidth for the video session is not assured. Active nodes can be used to check
this. The advantage of having a hierarchy of groups is that feedback implosion can
be controlled. Each client sends feedback messages only to the root of the multi-
cast group to which it is subscribed. Results are consolidated by the active node
acting as root, which in turn sends a report containing its own reception condition
information and/or consolidated information of its multicast group to the root of
the parent multicast group.
Parameters of interest for video streaming applications include packet loss, delay
and jitter. We can use RTP packets [12] to send the data, and then infer those param-
eters. The utilization of this information, i.e., how to use it to dynamically modify
the distribution tree, is left for future study.

3 Algorithm for Construction of the Multicast Distribution Tree

In this section we detail our approach for the construction of the multicast distribution
tree previous to the start of the transmission. As described in Section 2, it consists of
a hierarchical conformation of multicast groups, and the purpose of the algorithm is to

state 2−2
c = 2
f = 6

state 1−1
c = 1
f = 1

state 2−1
c = 2
f = 2

state 2−3
c = 2
f = 3

state 2−4
c = 2
f = 5

state 3−1
c = 3
f = 13

state 3−2
c = 3
f = 10

state 3−3
c = 3
f = 10

state 3−4
c = 3
f = 15

state 3−5
c = 3
f = 12

state 3−6
c = 3
f = 16

state 4−1
c = 4
f = 20

state 4−2
c = 4
f = 22

state 4−3
c = 4
f = 24

state 4−4
c = 4
f = 20

state 4−5
c = 4
f = 25

state 4−6
c = 4
f = 29

state 4−7
c = 4
f = 21

round 1

round 2

round 3

round 4

Fig. 4. Example of a state tree

adequately elect the root and members of each of them and to choose on which active
nodes filtering must be done.

For simplicity, we assume one QoS dimension, and therefore each client request can
be expressed by a scalar value, that denotes the requested quality. We also assume that
the paths the multicast routing algorithm uses are the same as the unicast paths from
the source to each one of the destinations, as created by Dijkstra’s algorithm, since this
coincides with multicast routing algorithm used in dense mode subnetworks such as
DVMRP and MOSPF.

Our algorithm forms a distribution tree in a request by request basis, taking the
requests in descending order of quality. In the case that there are many requests with
the same quality, we take first the ones from the clients closer to the sender. We try
to use the sender to stream to the clients that require the highest quality, and choose
the nodes located in the best place to perform filtering. The designated active nodes
becomes the root node of a new multicast group of a filtered video stream of lower
quality. The filtered stream is then sent to clients that demanded lower quality streams.

Each step in the construction of the tree defines a state. The state is defined by a
variable c that stands for the number of clients that have been already considered, and
the characteristics of the distribution tree needed to serve those clients, that is, which
nodes have been used to filter and produce, if any, the stream with the requested quality.
Fig. 4 depicts a sample state tree. Each state is denoted as c − i, where c stands for
the number of clients, i ≤ Nc is the state index, and Nc is the number of states in that
round. At the first round, there is only one state 1-1, where only one client with the
highest demand is satisfied by being provided the video stream at the required quality
directly from the server. From a state in round c, it is possible to derive several states
for round c + 1, depending on how the stream that the new client demands has been
generated.

When deriving states from a round in the state tree, we define a set of “candidate
senders” to provide the requested stream to the client newly considered in the next
round. Either the original server of the video sequence or any of the active nodes in the
network can be the candidate sender. For a given flow request and candidate sender, one
of the following situations is possible:

1. The candidate sender is already requested to relay a stream with the desired quality
by a previously processed client. In this case the client subscribes to the multicast
group the stream belongs to.

2. The candidate sender is already requested to relay a stream with a quality higher
than the one requested. In this case, this stream must be filtered at this candidate
sender. Then, a new multicast group is created with the candidate sender as the root,
and the requesting client becomes a member of this multicast group.

3. The candidate sender is not relaying a flow. In this case, the candidate sender must
first subscribe to a multicast group, filter the stream that receives as a member of
this group, and become the root of a new multicast group. The requesting client
subscribes to this new group to get the stream.

The election of the filtering nodes is based:

1. On the distance, i.e., number of hops, between the client and the candidate node.
The first candidate to choose is the closest one to the client that already belongs to
the distribution tree, i.e., that relays or filters a flow to satisfy requests of previous
rounds. The next ones are chosen close to this one.

2. On a function f that considers other factors such as total bandwidth used, link
utilization, and/or the use of node resources. This function can be thought as a
measure of how good is the complete distribution tree being formed. A lower value
of f means a better distribution tree.

For simplicity, we assume only one variable that comprises the node resources, and
that a filtering operation reduces the value of this variable by a predefined amount. If
one active node has already exhausted its resources, filtering cannot be performed, and
it is not considered as a candidate sender.

As described above, our algorithm belongs to the category of exhaustive search
algorithms. It means that the number of possible states in each round directly affects
the efficiency of our algorithm. In the worst case, the number of candidate senders is
equal to the number of active nodes in the network, say A, plus the original server. In
such a case, the number of states Nc in round c becomes (A + 1)c−1. Since this is
computationally expensive if the number of requests or active nodes in the network is
not small, two parameters were defined to restrict the number of states Nc to analyze:

– We limit the number of candidate senders to expand in each round to a fraction b of
the total candidate senders.

– We restrict the number of new states generated in a round to a maximum of m.

In each round, we select up to a maximum of m states to expand, the states chosen
are the ones with the lowest values of f . Each state is expanded with b × (A + 1) new
states, in which each new state implies a different candidate sender elected to satisfy
the request of the next client. The election of these new states is done by the distance in
number of hops criterion explained above. In this paper, we have not analyzed the effect
of the values of b and m, and we chose them empirically for our evaluation experiments.
We continue expanding the state tree until all the clients’ requests are satisfied. Then,
the state with the lowest f is chosen.

Table 1. Required bandwidth for streaming video (Mb/s)

quality single-layer layered
(quantizer scale) video video

4 (10) 14.4 22.65
3 (20) 8.8 13.64
2 (30) 6.6 8.75
1 (40) 5.4 5.19

3

21
4

4

2
4

2 q

active node

non−active node

client request (quality q)

mg1 (q=4)
mg2 (q=3)
mg3 (q=2)
mg4 (q=2)
mg5 (q=1)

3

2

4

6

5

8

9

1

server

7

Fig. 5. Multicast groups for our algorithm

3.1 Example

Fig. 5 shows an example network topology with 10 nodes. Active nodes are marked
with squares and non-active ones with circles. Client requests are indicated with un-
filled circles with a number that represents the requested quality. The server is attached
to node 3. When the sender is attached to an active node, we must distinguish if the
filtering is performed at the active node, or if the stream is provided by the sender.

The qualities are related with the bandwidth according to the data in Table 1, taken
from a previous work from our research group [13] for the MPEG-2 video coding algo-
rithm [14]. In layered video case, the layers must be piled up to achieve higher quality
video. For example, the bandwidth required for a stream of quality 4 is given as 5.19
(layer 1) + 3.56 (layer 2) + 4.89 (layer 3) + 9.01 (layer 4) = 22.65 Mb/s. The differ-
ent qualities are obtained varying the quantizer scale, and active nodes derive the video
stream of lower quality by de-quantizing and re-quantizing the received stream.

Fig. 5 shows the multicast groups conformed by our algorithm. Arrows show the
required streams, and arrow tips point to multicast group members. Two filtering pro-
cesses are needed in node 4 and one in node 9. It must be noted that active node 4
becomes member of multicast group 1, just to provide filtered streams to clients in
nodes 1 and 6.

4 Evaluation

In this section, we show the effectiveness of our proposed algorithm through some nu-
merical experiments. We generate random topologies using Waxman’s algorithm [15],
and choose the parameters appropriately to generate topologies with an average degree
of 3.5, to try to imitate the characteristics of real networks [16]. We assumed the pro-
portion of active nodes in the network to be 0.5. For simplicity, each filtering operation
is assumed to use the same amount of resources. We also assumed that the number
of filtering operations that each active node can afford is a random value between 15
and 30. The location of active nodes is chosen at random. The location of the server,
the clients and their corresponding requests’ qualities are also generated randomly, and
vary from one experiment to the other. Clients can request the video stream in one of
four available video qualities, according to Table 1. We apply two other approaches for
multicast tree construction to the same topologies for comparison purposes. Those are
simulcast and distribution of layered coded video.

The definition of f , which is used to evaluate the effectiveness of the built tree in the
algorithm can be modified according to which network parameters are most important in
the construction of the distribution tree. We performed the evaluation using two simple
definitions, those are for minimizing bandwidth and minimizing link utilization, which
we’ ll call f1 and f2:

f1 =
∑

i∈U
Bi (1)

f2 =
∑

i∈U Bi

|U| (2)

where i denotes a used link, U is the set of used links, and Bi denotes the used band-
width in link i. With f1 we wanted to minimize the total bandwidth used per session,
and with f2 we expected that our algorithm could perform some sort of “ load balanc-
ing,” to avoid congesting a single link.

We compare our algorithm increasing the number of sessions in the network to see
how many sessions can be simultaneously set up and provided for users. In the ex-
periments, all the links are assumed to have a bandwidth of 100 Mb/s. We multiplex
sessions, each of which is set up according to our algorithm, until the bandwidth of
any link is exhausted. Here, we should note that the network we consider is best-effort
and the constraint on the available link bandwidth is not taken into account in our algo-
rithm stated in Section 3. Thus, the number we consider here is that of simultaneously
acceptable sessions without causing a seriously overloaded link. The sessions are inde-
pendent, and we do not use the information of the links used by the other sessions to
build the current tree.

In Figs. 6 and 7, experiments 1-10, 11-20, 21-30, 31-40, 41-50, 51-60 refer to 20-
nodes 10-requests, 20-nodes 20-requests, 20-nodes 50-requests, 50-nodes 10-requests,
50-nodes 20-requests, and 50-nodes 50-requests cases, respectively.

Fig. 6 shows the average bandwidth required to establish all the first ten sessions
at the same time. f1 shows the lowest value for all the cases. Even though we chose
f2 to minimize the average bandwidth of used links in each session, when we sum all

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

av
er

ag
e

ba
nd

w
id

th
 (

M
b/

s)

Experiment

20n10r 20n20r 20n50r 50n10r 50n20r 50n50r

simulcast
layered

proposed f1
proposed f2

Fig. 6. Average bandwidth (Mb/s) for the first ten sessions

the sessions, f2 results in the highest values. Between them lie the values for simulcast
and layered video. When the number of requests is small (10 requests), the average
bandwidth used by layered encoded distribution is greater, but for larger number of
requests it is surpassed by the values of simulcast.

Fig. 7 shows the maximum number of simultaneous sessions up to 15 that could
be set up using each one of the three methods, i.e., the proposed algorithm, simulcast
and layered distribution. The results show performance in the following order, from
better to worse: the proposed algorithm using f1, the proposed algorithm using f2,
layered transmission, and simulcast. There were some few cases in which our proposed
algorithm was surpassed by the layered video approach. We expect this to occur when
we have the same stream with different qualities over the same link, congesting it as it
occurs in simulcast. This occurs, for example, when we have several clients connected
to a non-active node that request different quality streams.

Even when the location of senders are concentrated in a region of the network, the
advantage of f2 is relatively small although results are not shown in this paper due to
space limitation. With f2 we expected to increase the number of possible simultaneous
sessions, reducing the bandwidth used per link, at the expense of increasing the number
of used links. However, f2 only increases greedily the number of used links in the tree,
sometimes misplacing the filtering location.

5 Summary

We presented a framework for multicasting video to a heterogeneous group of clients,
considering a network in which active nodes can perform filtering of the original video
stream to satisfy different quality requirements. In our approach, all the quality requests

0

5

10

15

20

0 10 20 30 40 50 60

nu
m

be
r

of
 s

es
si

on
s

Experiment

20n10r 20n20r 20n50r 50n10r 50n20r 50n50r

simulcast
layered

proposed f1
proposed f2

Fig. 7. Maximum number of simultaneous sessions (out of 15)

are collected and the video server infers a multicast distribution tree prior to the video
transmission.

We then presented an algorithm for electing the filtering nodes in this distribution
tree, which aims to minimize a function f that can be set to consider some network pa-
rameters, to achieve efficient use of the network resources. We evaluated our algorithm
choosing two simple definitions for f : the total bandwidth used, i.e., the sum of the
bandwidth used in each link, and the average bandwidth of used links. We compared
our algorithm with other two methods of distributing video that not consider the use
of active nodes: simulcast and layered encoded distribution, and found that using our
algorithm we can set up a greater number of simultaneous sessions, meaning a more
effective use of the available bandwidth of the network, but at the expense of requiring
processing capability at the network nodes.

Future research topics include: the election of other definitions for f to improve the
distribution tree, consideration of the effect of delays introduced at the filtering nodes,
and the analysis to use reception feedback to dynamically modify the multicast tree
after the beginning of the video transmission.

Acknowledgments

This work was partly supported by Research for the Future Program of Japan Society for
the Promotion of Science under the Project “ Integrated Network Architecture for Ad-
vanced Multimedia Application Systems,” a Grant-in-Aid for Scientific Research (A)
11305030 and a Grant-in-Aid for Encouragement of Young Scientists 12750322 from
The Ministry of Education, Science, Sports and Culture of Japan, Special Coordination
Funds for Promoting Science and Technology of the Science and Technology Agency
of the Japanese Government, and Telecommunication Advancement Organization of
Japan under the Project “Global Experimental Networks for Information Society.”

References

1. McCanne, S., Jacobson, V., Vetterli, M.: Receiver-driven Layered Multicast. Proc. ACM
Sigcomm (1996) 117-130

2. Yeadon, N., Garcı́a, F., Hutchinson, D., Shepherd, D.: Filters: QoS Support Mechanisms for
Multipeer Communications. IEEE Journal on Selected Areas in Communications, Vol. 14,
No. 7 (1996) 1245-1262

3. Pasquale, J., Polyzos, G., Anderson, E., Kompella, V.: Filter Propagation in Dissemination
Trees: Trading Off Bandwidth and Processing in Continuous Media Networks. Proc. NOSS-
DAV (1993)

4. Metzler, B., Harbaum, T., Wittmann, R., Zitterbart, M.: AMnet: Heterogeneous Multicast
Services based on Active Networking. Proc. IEEE OpenArch (1999) 98-105

5. Calvert, K. (ed.): Architectural Framework for Active Networks, Version 1.0. Active Net-
work Working Group Draft (1999)

6. Alexander, S., Arbaugh, W., Hicks, M., Kakkar, P., Keromytis, A., Moore, J., Gunter, C.,
Nettles, S., Smith, J.: The Switchware Active Network Architecture. IEEE Network, Vol. 12
No. 3 (1998) 27-36

7. Wetherall D.: Service Introduction in an Active Network. Ph.D. Thesis, Massachusetts Insti-
tute of Technology (1999)

8. Tanenbaum, A.: Computer Networks. 3rd. edn. Prentice Hall (1996)
9. Handley, M.: SAP: Session Announcement Protocol. Internet Draft, Work in Progress (1996)

10. Fukuda, K., Wakamiya, N., Murata, M., Miyahara, H.: On Flow Aggregation for Multicast
Video Transport. Proc. Sixth IFIP International Workshop on Quality of Service (1998) 13-
22

11. Semeria, C., Maufer, T.: Introduction to IP Multicast Routing. 3COM White Paper, available
at http://www.3com.com

12. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol for Real-
Time Applications. Request for Comments 1889 (1996)

13. Fukuda, K., Wakamiya, N., Murata, M., Miyahara, H.: Real-Time Video Distribution with
Hybrid Hierarchical Video Coding in Heterogeneous Network and Client Environments.
Proc. MMNS (1998)

14. ISO/IEC DIS 13818-2: MPEG-2 Video. ISO Standard (1994)
15. Waxman, B.: Routing of Multipoint Connections. IEEE Journal on Selected Areas in Com-

munications, Vol. 6, No. 9 (1988) 1617-1622
16. Zegura, E., Calvert, K., Bhattacharjee, S.: How to Model an Internetwork. Proc. IEEE Info-

com (1996)

