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Abstract. We propose a heuristic algorithm for the construction of a heteroge-
neous multicast distribution tree used for video transmission that satisfies differ-
ent QoS requests. Our approach assumes an active network where active nodes
can filter the video stream. By appropriately choosing the active nodes at which
filtering is performed, the proposed algorithm constructs the multicast tree where,
for example, the total required bandwidth is minimized. We assume existing mul-
ticast routing algorithms to form multicast groups, and the resulting distribution
tree is a hierarchical arrangement of those groups.
We evaluate the performance of our algorithm and compare it against two other
approaches: simulcast and layered encoded transmission. Results show that we
can get advantages when network nodes participate in the construction of the het-
erogenous multicast distribution tree, such as the possibility to set up a larger
number of simultaneous multicast sessions.
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1 Introduction
The problem of multicast distribution of video gets even more complex when consid-
ering a heterogeneous environment, where different clients joining the same multicast
session have different quality requests due to limitations in the network bandwidth or in
the end hosts’ processing capabilities. We must deal with this heterogeneity processing
the original video stream in a way that several different quality streams with different
rate can be provided, and using a distribution method to give each client the stream with
the quality closest to its requirement.

In simulcast, the server produces a different video stream for each requested quality.
This is the easiest way of providing the multiple QoS requirements simultaneously, but
leads to the waste of system resources. Our research group has proposed the use of flow
aggregation [1], where clients with similar QoS requests are aggregated to minimize
the number of streams produced at the sender. However this still remains as a simulcast
transmission, and the server and the network would be overloaded when the number of
clients is considerably large.

Layered encoded video has also been considered to address the problem of hetero-
geneity. In layered video, a video stream is decomposed into a base layer stream and
some enhancement layers. The base layer is enough for decoding the video sequence but
in the lowest quality, and the reception of additional layers is necessary to decode higher



quality video. Each client chooses the appropriate set of layers to achieve the preferred
video quality. McCanne et al. proposed [2] a framework for the transmission of lay-
ered signals using IP multicast. The advantage of this approach is that it can be used in
the current network infrastructure. Problems with layered video include the difficulty
in generating the video layers, the required bandwidth overhead, and the granularity.
Since only a few layers can be produced, we get only a few different qualities. We also
considered the use of flow aggregation with layered coded video [3] and showed that
we can accomplish further effective video multicast. However, this approach still re-
tains the limitations of layered encoding, although we introduced a way of constructing
video streams of 12 layers.

Against the heterogeneity, the research community has gotten interested in the pos-
sibility of introducing limited programmability inside the network, allowing the net-
work nodes to decide if it is necessary to modify the contents and the routing of data
packets after performing some computation. These processing-enabled nodes are called
active nodes [4, 5]. Expectations for active networking are wide-ranging, starting from
the possibility of accelerating the rate of introduction of new protocols to the introduc-
tion of novel services at the node level. An example is the introduction of new approach-
es for multicast [6-8] that exploit the advantages of intermediate node processing.

Heterogeneous multicasting of video is a natural candidate for enjoying the benefits
of active networking. The server becomes free from providing video streams of different
qualities if the quality regulation can be performed inside the network. At video filtering
nodes, new video streams of lower qualities can be derived from the received ones at
the expense of processing capability. The methods for reducing the quality of a video
signal depend on the encoding format used.

Research into filtering by Yeadon et al. [9] and Pasquale et al. [10] predates active
networking research, but propose a filtering propagation mechanism to vary the location
where filtering occurs according to the requirements of downstream clients. AMnet
[8] proposes a model and an implementation for providing heterogeneous multicast
services using active networking. According to this approach, a hierarchy of multicast
groups is formed, in which some active nodes that act as receivers in a multicast group
become roots in other multicast groups, but it is not explained how the multicast groups
are conformed and how the root senders of each multicast group are elected.

In this work we are facing one of the aspects related with heterogenous multicas-
ting using active node filtering: how to decide in which active nodes filtering must be
performed to achieve an efficient multicast distribution tree. We propose an algorithm
that forms a hierarchy of multicast groups, where the top level group root is the video
server. The members of this group are the clients which requested the highest quality
video, and one or some active nodes which filter the video stream, producing one with
lower quality. These active nodes become roots of other multicast groups to satisfy the
requirements of other clients. Analogously, these new multicast groups can have one or
some active nodes as members that become roots of even lower level groups.

We assume that filtering functions are provided within active nodes. How the filter-
ing mechanisms are implemented is out of the scope of this work.



This paper is organized as follows: Section 2 explains our algorithm in detail; Sec-
tion 3 evaluates its performance, comparing it with other approaches for distributing
video; Section 4 concludes our work.

2 Construction of the Multicast Distribution Tree
In this section we detail our approach for the construction of the multicast distribution
tree. We are assuming the following:
1. The server collects all of the client’s requests, and it builds an appropriate multicast

distribution tree previous to the start of the video transmission. We assume the
server can get all the information it requires, such as the network topology and
information about active nodes. The drawback of this centralized approach is lack
of scalability: the proposed algorithm suffers with big topologies or large number of
clients. We can alleviate this issue to some extent using clustering to group requests
from closely located clients with similar quality requests.

2. For simplicity, we assume one QoS dimension, and therefore each client request
can be expressed by a numerical value, that denotes the requested quality.

3. We can re-filter an already filtered video sequence in order to obtain another one
with lower quality. We are not taking into consideration the effect that delays due
to filtering can cause to the perceived quality.

4. We do not replace existing multicast routing algorithms, indeed we assume they are
provided by the network layer. Our goal is the formation of the multicast groups,
i.e., election of the roots and members of each one of them.
DVMRP and MOSPF [11] are widely used multicast routing algorithms in dense
mode subnetworks that build spanning trees rooted at the source using shortest path
techniques. Therefore, we assume that the paths the multicast routing algorithm us-
es are the same as the unicast paths from the source to each one of the destinations,
as created by Dijkstra’s algorithm.

2.1 Sketch of the Active Application to Handle Filtering
Due to the centralized approach at the server, the complexity of the required application
can be reduced. We would require the following steps:
1. Service Announcement. The server uses a well-known multicast address to inform

the possible clients about the session contents. The protocol used to send these
messages can be similar to the SAP protocol used in the MBONE [12].

2. Subscription. Each of the clients that wants to participate in the session sends a
request containing the desired quality.

3. Calculation of the distribution tree. When this step is completed, we have the mul-
ticast groups and the nodes that are going to perform filtering defined.

4. Sending the information to the active nodes designated to perform filtering. The
server transmits the following information to the nodes:

– Multicast address as receiver: the active node is going to get the data to be
filtered through this address

– Multicast address as sender: the active node will send the data using this ad-
dress

– Filtering code and parameters: the kind of filtering to apply to the stream
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5. Sending the corresponding multicast group address to each client, in order to have
them subscribe.

6. Subscription of each client to the corresponding multicast group.
7. Data transmission. The server transmits the required streams to the multicast groups

in which it is the root. Active nodes inside the network designated as filters redis-
tribute the video stream as required.

2.2 Distribution Tree Construction Algorithm
Our algorithm forms a distribution tree in a request by request basis, taking the requests
in descending order of quality. In the case that there are many requests with the same
quality, we first take the ones from the clients closer to the sender. We try to use the
sender to stream to the clients that require the highest quality, and choose the nodes
located in the best place to perform filtering. The designated active nodes become the
root node of a new multicast group of a filtered video stream of lower quality. The
filtered stream is then sent to clients that demanded lower quality streams. We form a
hierarchy of multicast groups as is proposed in AMnet [8], as shown in Fig. 1.

Each step in the construction of the tree defines a state. The state is defined by a
variable c that stands for the number of the clients that have been already considered,
and the characteristics of the distribution tree needed to serve those clients, that is,
which nodes have been used to filter and produce, if any, the stream with the requested
quality. Fig. 2 depicts a sample state tree. Each state is denoted as c� i, where c stands
for the number of clients, i � Nc is the state index, and Nc is the number of states in
that round. At the first round, there is only one state 1-1, where only one client with the
highest demand is satisfied by being provided the video stream at the required quality
directly from the server. From a state in round c, it is possible to derive several states
for round c + 1, depending on how the stream that the new client demands has been
generated.

When deriving states from a round in the state tree, we define a set of “candidate
senders” to provide the requested stream to the client newly considered in the next
round. Either the original server of the video sequence or any of the active nodes in the
network can be the candidate sender. For a given flow request and candidate sender, one
of the following situations is possible:



1. The candidate sender is already requested to relay a stream with the desired quality
by a previously processed client. In this case the client subscribes to the multicast
group the stream belongs to.

2. The candidate sender is already requested to relay a stream with a quality higher
than the one requested. In this case, this stream must be filtered at this candidate
sender. Then, a new multicast group is created with the candidate sender as the root,
and the requesting client becomes a member of this multicast group.

3. The candidate sender is not relaying a flow. In this case, the candidate sender must
first subscribe to a multicast group, filter the stream that receives as a member of
this group, and become the root of a new multicast group. The requesting client
subscribes to this new group to get the stream.
The election of the filtering nodes is based:

1. On the distance, i.e., number of hops, between the client and the candidate node.
The first candidate to choose is the closest one to the client that already belongs to
the distribution tree, i.e., that relays or filters a flow to satisfy requests of previous
rounds. The next ones are chosen close to this one.

2. On a function f that considers other factors such as total bandwidth used, link
utilization, and/or the use of node resources. This function can be thought as a
measure of how good is the complete distribution tree being formed. A lower value
of f means a better distribution tree.
For simplicity, we assume only one variable that comprises the node resources, and

that a filtering operation reduces the value of this variable by a predefined amount. If
one active node has already exhausted its resources, filtering cannot be performed, and
it is not considered as a candidate sender.

As described above, our algorithm belongs to the category of exhaustive search
algorithms. It means that the number of possible states in each round directly affects
the efficiency of our algorithm. In the worst case, the number of candidate senders is
equal to the number of active nodes in the network, say A, plus the original server. In
such a case, the number of states Nc in round c becomes (A + 1)c�1. Since this is
computationally expensive if the number of requests or active nodes in the network is
not small, two parameters were defined to restrict the number of states N c to analyze:

– We limit the number of candidate senders to expand in each round to a fraction b of
the total candidate senders.

– We restrict the number of new states generated in a round to a maximum of m.
In each round, we select up to a maximum of m states to expand, the states chosen

are the ones with the lowest values of f . Each state is expanded with b� (A + 1) new
states, in which each new state implies a different candidate sender elected to satisfy
the request of the next client. The election of these new states is done by the distance
in number of hops criterion explained above. We continue expanding the state tree until
all the clients’ requests are satisfied. Then, the state with the lowest f is chosen.

2.3 Example
Figs. 3 and 4 show an example network topology with 10 nodes. Active nodes are
marked with squares and non-active ones with circles. Client requests are indicated
with unfilled circles with a number that represents the requested quality. The server is
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Table 1.Required bandwidth for streaming video (Mb/s)

quality single-layer layered
(quantizer scale) video video

4 (10) 14.4 22.65
3 (20) 8.8 13.64
2 (30) 6.6 8.75
1 (40) 5.4 5.19

attached to node 3. When the sender is attached to an active node, we must distinguish
if the filtering is performed at the active node, or if the stream is provided by the sender.

The qualities are related with the bandwidth according to the data in Table 1, taken
from a previous work from our research group [13] for the MPEG-2 video coding algo-
rithm [14]. In layered video case, the layers must be piled up to achieve higher quality
video. For example, the bandwidth required for a stream of quality 4 is given as 5.19
(layer 1) + 3.56 (layer 2) + 4.89 (layer 3) + 9.01 (layer 4) = 22.65 Mb/s. The differ-
ent qualities are obtained varying the quantizer scale, and active nodes derive the video
stream of lower quality by de-quantizing and re-quantizing the received stream.

Fig. 3 shows the multicast groups conformed by our algorithm. Arrows show the
required streams, and arrow tips point to multicast group members. Two filtering pro-
cesses are needed in node 4 and one in node 9. It must be noted that active node 4
becomes member of multicast group 1, just to provide filtered streams to clients in
nodes 1 and 6.

As a comparison, Fig. 4 depicts the multicast groups needed in simulcast transmis-
sion. The links between nodes 3-7 and between nodes 7-4 have to carry many different
quality streams, and for this reason they can become congested links. Using the values
of Table 1, using simulcast we need to use 26.4 Mb/s in these links, compared with the
14.4 Mb/s needed by our algorithm.



2.4 Applicability to Multiple QoS Dimensions
For simplicity, we assumed above the existence of only QoS dimension. If we lift this
restriction, e.g., if clients request a stream with a defined quantization scale and frame
rate, the proposed algorithm is still applicable, but with the difference that the stream
delivered to each multicast group is characterized with two parameters instead of one.
That implies that an active node must be provided with a stream whose both quality
parameters are greater than the quality parameters of the stream that it must produce.
Once the QoS parameters are specified, we can deduct the required bandwidth using an
approach proposed by previous work of our research group [15].

3 Evaluation
In this section, we show the effectiveness of our proposed algorithm through some nu-
merical experiments. We generate random topologies using Waxman’s algorithm [16],
and choose the parameters appropriately to generate topologies with an average degree
of 3.5, to try to imitate the characteristics of real networks [17]. We assumed the pro-
portion of active nodes in the network to be 0.5. For simplicity, each filtering operation
is assumed to use the same amount of resources. We also assumed that the number of
filtering operations that each active node can do is a random value between 15 and 30.
The location of active nodes is chosen at random. The location of the server, the clients
and their corresponding requests’ qualities are also generated randomly, and vary from
one experiment to the other. Clients can request the video stream in one of four avail-
able video qualities, according to Table 1. We apply two other approaches for multicast
tree construction to the same topologies for comparison purposes. Those are simulcast
and distribution of layered coded video.

The definition of f , which is used to evaluate the effectiveness of the built tree in the
algorithm can be modified according to which network parameters are most important in
the construction of the distribution tree. We performed the evaluation using two simple
definitions, those are for minimizing bandwidth and minimizing link utilization.

3.1 Minimizing Bandwidth
In this case the definition of f is the total used bandwidth for the video distribution tree.
We call this definition for f as f1:

f1 =
X

i2U

Bi (1)

where i denotes a link, U is the set of used links, and B i denotes the bandwidth devoted
to video distribution in link i.

To evaluate our algorithm with f1, we generate ten 20-node and ten 50-node net-
work topologies, varying the number of requests among 10, 20 and 50. The results are
summarized in Figs. 5 and 6. In both figures, the first 10 experiments are for 10 requests,
the next 10 for 20 requests and the last 10 for 50 requests.

In general, the proposed algorithm requires a lower total bandwidth than simulcast
and layered video, at the cost of requiring processing at the filtering nodes. When the
number of requests is small, the total bandwidth used by simulcast transmission is even
smaller than the one required for layered transmission, because the overhead of the latter
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is not justified owing to the dispersed clients. As the number of requests increases, the
bandwidth required for layered encoding transmission becomes less than the required
by simulcast, and becomes closer to the one required by our proposed algorithm. Since
we fixed the proportion of active nodes to be 0.5 in the generated topologies, when
we increase the number of requests, the number of non-active nodes that have clients
attached requesting different quality streams is also increased. In those cases, several
streams must be relayed toward the non-active nodes because filtering cannot be done
locally, thus increasing the value of f1.

3.2 Simultaneous Multicast Sessions
Minimization of the total bandwidth required for video multicasting is intended to avoid
the extremely high load on the network and let other sessions set up their trees. In this
subsection, we compare our algorithm increasing the number of sessions in the network
to see how many sessions can be simultaneously set up and provided for users.

In the experiments, all the links are assumed to have a bandwidth of 100 Mb/s.
We multiplex sessions, each of which is set up according to our algorithm, until the
bandwidth of any link is exhausted. Here, we should note that the network we con-
sider is best-effort and the constraint on the available link bandwidth is not taken into
account in our algorithm stated in Section 2. Thus, the number we consider here is that
of simultaneously acceptable sessions without causing a seriously overloaded link. The
sessions are independent, and we do not use the information of the links used by the
other sessions to build the current tree.

In addition to f1, which is to minimize the total bandwidth, we introduce other
function f2, which is related to the required average bandwidth of the used links:

f2 =

P
i2U

Bi

jUj
(2)
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where i denotes a used link, U is the set of used links, and B i denotes the used band-
width in link i. We expected that with this definition, our algorithm could perform some
sort of “ load balancing,” to avoid congesting a single link.

In Figs. 7 and 8, experiments 1-10, 11-20, 21-30, 31-40, 41-50, 51-60 refer to 20-
nodes 10-requests, 20-nodes 20-requests, 20-nodes 50-requests, 50-nodes 10-requests,
50-nodes 20-requests, and 50-nodes 50-requests cases, respectively.

Fig. 7 shows the average bandwidth required to establish the first ten sessions at
the same time. f1 shows the lowest value for all the cases. Even though we chose f2
to minimize the average bandwidth of used links in each session, when we sum all the
sessions, f2 results in the highest values. Between them lie the values for simulcast
and layered video. When the number of requests is small (10 requests), the average
bandwidth used by layered encoded distribution is greater, but for larger number of
requests it is surpassed by the values of simulcast.

As a result of spreading the sessions in a large number of links, the variance of the
bandwidth for f2 is also reduced. The values for f1 are even smaller due to the reason
than the average bandwidth values are smaller compared with the other cases. We do
not show the numerical values due to space limitations.

Fig. 8 shows the maximum number of simultaneous sessions that could be set up
using each one of the three methods, i.e., the proposed algorithm, simulcast and layered
distribution. The results show performance in the following order, from better to worse:
the proposed algorithm using f1, the proposed algorithm using f2, layered transmission,
and simulcast. There were some few cases in which our proposed algorithm was sur-
passed by the layered video approach. We expect this to occur when we have the same
stream with different qualities over the same link, congesting it as it occurs in simulcast.
This occurs, for example, when we have several clients connected to a non-active node
that request different quality streams.
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Even when the location of senders are concentrated in a region of the network, the
advantage of f2 is relatively small although results are not shown in this paper due to
space limitation.

3.3 Required Computation Time

In this paper, we have not analyzed the effect of varying the values of b and m. Their
election involves a trade-off between required processing time and optimality of the
obtained solution. Just to have an idea, we averaged the time required by our algorithm
to generate some multicast trees. For networks with 20 nodes, we required an average of
6, 14 and 56 seconds for trees with 10, 20 and 50 requests, respectively, using m = 20
and b = 1. For networks with 50 nodes, we required 101, 238, and 451 seconds for 10,
20 and 50 requests, respectively, using m = 20 and b = 0:3 for the first two cases and
b = 0:2 for the last case. We evaluated our algorithm written in Java on an 800 MHz
Pentium III machine.

3.4 Other Definitions for f

We considered above two simple definitions for f : the first one, f1, is simply the sum
of the bandwidth used in each link of the distribution tree; the second one, f 2 is an
expression for the average bandwidth of used links. With f 2 we expected to increase
the number of possible simultaneous sessions, reducing the bandwidth used per link, at
the expense of increasing the number of used links. The problem with f 2 is that it in-
creases greedily the number of used links in the tree, sometimes misplacing the filtering
location. As we mentioned before in this section, some links can get congested when
they carry the same video with different qualities. We could augment the definition of
f1 with a function that tries to avoid the existence of links that carry different quality
flows simultaneously, adding a penalty value if those links exist.

We can also consider to limit the number of filtering operations performed in the
distribution tree or at a single node, if we need to ensure limited use of node processing



resources. Although we assume a best-effort network, if link capacity is constrained, it
is also possible to modify f to consider this restriction.

4 Summary
We presented an algorithm for electing the filtering nodes in an active network to con-
struct a heterogeneous multicast distribution tree, which aims to minimize a function
f that can be set to consider some network parameters, to achieve efficient use of the
network resources.

We evaluated our algorithm choosing two simple definitions for f : the total band-
width used, i.e., the sum of the bandwidth used in each link, and the average bandwidth
of used links. We compared our algorithm with other two methods of distributing video
that not consider the use of active nodes: simulcast and layered encoded distribution,
and found that using our algorithm we can set up a greater number of simultaneous
sessions, meaning a more effective use of the available bandwidth of the network, but
at the expense of requiring processing capability at the network nodes.

In our evaluation, we choose f to take very simple forms. We have not tested further,
but we think that if we elect other more elaborated appropriate definitions for f , it’s
possible to achieve better distribution trees.

We also presented a simple outline of how an active application can make use of
our approach. It can result in a simple implementation, since the tree is constructed in
a centralized approach. However, due to this reason, we can’ t expect that the algorithm
scales to large internetworks.

We did not consider changing the distribution tree dinamically due to changes in
the network conditions, necessary in the case of best effort networks that is what we
considered. It is left as a future research topic.
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