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SUMMARY A packet transmission delay is an important quality char-
acteristic for various applications including real-time and data applications.
In particular, it is necessary to investigate not only a whole distribution of
the packet transmission delay, but also the tail part of the distribution, in
order to detect the packet loss. In this paper, we analyze the characteristics
of the tail part of packet delay distributions by statistical analytic approach.
Our analytic results show that the Pareto distribution is most appropriate in
95–99.9% region of the cumulative distribution of packet transmission de-
lays. Based on our statistical analysis, we next propose an adaptive playout
control algorithm, which is suitable to real-time applications. Numerical
examples show that our algorithm provides the stable packet loss ratio in-
dependently on traffic fluctuations.
key words: packet transmission delay, one-way delay, distribution func-
tion, Pareto distribution, packet loss ratio

1. Introduction

The Internet is now widely deployed and the users can easily
get the global accessibility from their home terminals. One
of the main reasons for the prevalence of the Internet is in
its routing mechanism. Routing of the Internet has two key
features; flexibility and scalability. The Internet provides
the dynamic routing based on the exchange of the routing
information among routers. For example, when a network
link becomes down because of some troubles, an alterna-
tive route will be prepared automatically. Second, the packet
processing at the routers is simple (e.g., FIFO) to reduce the
overhead of packet forwarding at the router.

From the users’ point of view, on the other hand, the
packet transmission delay is an important metric since it di-
rectly affects the end-to-end performance. One example can
be found in the real-time application using RTP (Realtime
Transport Protocol) [1]; a popular protocol for real-time ap-
plications in recent years. RTP uses RTCP (Real Time Con-
trol Protocol) to control the transmission rate. In RTCP, the
sender maintains the transmission delay of packets based on
RTT values to control the packet transfer rate. To keep the
preferable performance in RTP-based applications, an ac-
curate estimation of the packet transmission delay is essen-
tial. However, RTT estimation is insufficient in several situ-
ations. In real-time voice communications, for example, it is
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desirable to separately measure transmission delays of both
downstream (sender to receiver) and upstream (receiver to
sender) routes because the Internet routes are often asym-
metric [2]. From these reasons, it is necessary to investigate
not only the characteristic of RTT but also that of one-way
transmission delays in order to develop an accurate delay
estimation method.

Of course, the dynamic routing of the Internet makes it
impossible for the end-users to select the appropriate route
for satisfying the users’ quality of service (QoS). Further-
more, due to a simple packet processing at routers, it is dif-
ficult to predict the transmission delay of the packet. In this
paper, we show the accurate packet transmission delay esti-
mation based on the statistical analytic approach.

The studies about the characteristics of the end-to-end
packet transmission delay have been made in some litera-
tures [3]–[5], but most of those studies have focused on the
average characteristics and the entire distributions only. If
we want to detect the packet loss, the tail distribution is
more important than the entire distribution. For example,
in UDP based real-time applications, control of theplayout
time should be accurate to provide the high-quality real-time
service. Here, the playout time is a time when the applica-
tion client actually begins to play the packet. In the play-
out control, the client application changes its buffering time,
which directly affects the communication quality of the ap-
plication. While the playout is essential to absorption of
the delay variation, too short playout time leads to the fact
that the client treats packets to be lost even if those packets
eventually arrive. On the contrary, large playout time may
introduce an unacceptable delay that the client user cannot
be tolerant. A more difficulty exists in determining the play-
out time. The packet transmission delay between the server
and client is changed according to time in the Internet en-
vironment. The adequate playout time is heavily dependent
on variations of packet transmission delays; i.e., the time-
dependent behavior, the delay distribution is also important
in determining the playout time.

The issue of playout control has been made by some
previous works [6], [7], but most of these algorithms are
based on calculation method of the time-out threshold in
TCP [8] which tries to manage the packet loss ratio to be
closely zero. However, recent streaming applications are
robust from some packet losses with keeping the sufficient
reproduction quality. If we consider the playout control al-
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gorithm that allows some marginal packet losses, it is pos-
sible to shorten the playout delay without degradation of re-
production quality. In such an algorithm, it is necessary to
know the characteristics of the packet transmission delay to
provide the stable quality and packet loss ratio. From this
reason, we first analyze the statistics of packet transmission
delays to apply the playout control algorithm.

Keeping those facts in mind, we analyze the character-
istics of the packet transmission delays. We first measure
the distribution of the one-way transmission delay as well as
the round-trip delay, and determine the suitable distribution
function through a statistical analytic approach. We next ap-
ply the distribution function to estimate the playout time for
real-time applications. In an actual situation, some user pre-
fer the real-time reproduction of the media even if the packet
loss becomes high, and another user may want high quality
at the expense of the large playout time. By taking account
of it, we propose a new playout control method which en-
sures the QoS of real-time application according to user’s
willingness while minimizing the overhead of playout time.

The paper is organized as follows. We first show a
brief summary of the characteristics of the packet transmis-
sion delay and our measurement framework in Section 2.
In Section 3, we explain our analytic approach to estimate
parameters of distribution functions and select the most ap-
propriate distribution. We next show the result of analysis
in Section 4. In Section 5, we propose a new playout con-
trol method based on the results in Section 4, and show the
effectiveness of our proposals. Finally, we summarize our
work and describe our future research topic in Section 6.

2. Methods of Packet Transmission Delay Measure-
ments

In this section, we show a brief summary of our measure-
ment method. We measured two types of the packet trans-
mission delay; the round-trip transmission delay and the
one-way transmission delay. We first show the outline of the
measurement approach, and next describe our measurement
environments.

2.1 Measurements of the Round Trip Time

There are several tools to measure RTT values. See [9] and
references therein. We adoptedpchar [10] for RTT mea-
surements.Pchar (an updated version ofpathchar [11])
was developed to measure the bandwidth of intermediate
links between two end hosts.Pchar uses the ICMP (In-
ternet Control Message Protocol) Time Exceeded message
to measure the RTT. More specifically,pchar utilizes the
TTL (Time To Live) field in the IP packet. By protocol spec-
ification, the router decreases the value of TTL by one be-
fore the packet forwarding. If the value of TTL becomes
zero, the router sends the ICMP ‘Time Exceeded’ packet
back to the sender. Thus,pchar intentionally sets the value
of TTL to a smaller value to indicate the number of hops
the packet can traverse. After the sender receives the ICMP
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Fig. 1 The Measurement Infrastructure for One-way Delay

Time Exceeded packet, the sender can obtain the RTT which
is the duration between when the host sends the packet and
when it receives the ICMP packet. The advantage of us-
ing ICMP messages is that it is not necessary to deploy any
other hosts to measure the RTT. In addition,pchar pro-
vides events of routing changes and the packet loss ratio.
Those are the reasons why we adoptedpchar.

2.2 Measurements of the One-way Delay

Figure 1 shows the measurement infrastructure. To measure
the one-way delay, we developed the server-client based
tool, in which the sender host records the current time into
the packet before sending. When the packet arrives at the
receiver host, the delay is calculated using the receiver’s
clock. For this, time clocks of the sender and the receiver
should be synchronized. However, synchronization among
distributed hosts in the Internet is difficult and a still open
issue [12], [13]. To avoid this problem, we use GPS (Global
Positioning System) for time synchronization. We mea-
sured the one-way delay by considering the real-time appli-
cations like a continuous media, in which data packets are
periodically sent by the sender host. The Internet radio and
the live event concert are categorized into this class.

2.3 Measurement Methodology

In our experimental setting, the measurement host is con-
nected to ISP (Internet Service Provider) via 28.8 Kbps tele-
phone line, since we suppose the case that customers use the
streaming based real-time application at their home termi-
nals. We measured RTTs to some famous WWW servers
in Japan in January 2000. We next measured one-way de-
lays between two hosts which are connected by 28.8 Kbps
modems to different ISPs in July 2000. We also investigate
the influences of the following two factors on the determi-
nation of suitable distribution functions.

• Effects of the Time of Day: It is known that the In-
ternet traffic pattern repeats every day [14]. Thus, it
is important to investigate the patterns of the suitable
distribution function caused by the effects of “time of
day”.
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• Effect of the Timescale: If the timescale for parame-
ter estimation is too short, it may mislead to the wrong
estimation. Thus, it is essential to investigate the ef-
fect of timescale for the determination of the suitable
distribution function.

3. Modeling the Packet Transmission Delay

In this section, we apply the statistical analysis methods
to the measurement data following the method described
in [15] where the authors analyzed characteristics oftel-
net andftp traffic. In modeling, we emphasis the coinci-
dence at the tail part of delay distribution, because it is use-
ful to detect packet loss in streaming applications. In what
follows, we summarize our statistical method.

3.1 Distribution Functions

We selected four distribution functions as candidates to ade-
quately represent delay distributions. The normal and expo-
nential distributions are given by

F (x) =
∫ x

0

1√
2πσ

exp

[−(y − ζ)2

2σ2

]
dy, (1)

and

F (x) = 1 − exp(−x

β
), β > 0, (2)

respectively. The lognormal distribution is the function, of
which variable is the logarithmic variable of the normal dis-
tribution, i.e.,

F (x) =
∫ x

0

1√
2πσy

exp

[−(log y − ζ)2

2σ2

]
dy. (3)

The Pareto distribution is widely known to be able to repre-
sent a self-similarity [16], [17], which is given by

F (x) = 1 −
(

k

x

)α

, x >= k. (4)

3.2 Parameter Estimation

In order to detect the packet loss from the distribution of
packet transmission delays, the coincidence at the tail part
of distributions is more important, even if the measured data
are far from the model distribution function in the other part
of the entire distribution. To fit the distribution function ac-
curately, we estimate parameters by utilizing only the tail
part (e.g., 90–99.9%) of collected delays. For parameter es-
timation of each distribution function, we use the maximum-
likelihood-estimator (MLE) method [18]. Parameters of the
exponential and normal distributions can be estimated by
calculating the mean and variance of measured delays. In
the lognormal distribution, two parameters (ζ, σ) are calcu-
lated from

ζ̂ =
1
n

n∑
i=1

logxi, (5)

σ̂2 =
1
n

n∑
i=1

(log xi − x̄)2 , (6)

wheren is the number of measurements andx̄ is the mean of
log(xi) for all i. Parameters (̂k, α̂) of the Pareto distribution
are obtained from [18];

k̂ = min(x1, x2, · · · , xn), (7)

α̂ = n

[
n∑

i=1

log
(

xi

k̂

)]−1

. (8)

3.3 Determination Method of Adequate Distribution

We determine the most appropriate probability distribution
function byχ2-test. Noting that a typical application of our
analysis is the playout control for streaming applications, the
estimation of the value around the target point (e.g., 99%,
99.9%) of the cumulative delay distribution should be accu-
rate, since it directly affects the packet loss ratio in streaming
applications and the reproduction quality of real-time appli-
cations. From this reason, we evaluate the coincidence be-
tween the candidate functions and measured delays on 95–
99.9% region of the cumulative distribution by theχ 2-test.

In theχ2-test, we investigate the coincidence between
delay distribution and candidate functions byλ̂2, which is
calculated as follows. We first separate the range ofn mea-
sured delays intoN subranges. For each subrangei, we
obtain the probabilityp i that an arbitrary valuex belongs to
the subrangei and the number of measurementsYi falling
into the subrangei. Then,λ2 is given by

λ̂2 =
X2 − K − N + 1

n − 1
, (9)

where

X2 =
N∑

i=1

(Yi − npi)2

npi
, (10)

K =
N∑

i=1

Yi − npi

npi
. (11)

The distribution having the smallest value ofλ̂2 is most
appropriate to represent the measured data. Consequently,
we determine the appropriate model distribution.

4. Analytic Results

In this section, we show results of our statistical analysis de-
scribed in the previous section. Note here that in this paper,
we define a “target value” as a probability that the packet
can be “successfully” playouted at the destination. We also
note that the packet loss within the network is not considered
here, and only the packets received within the playout time.
Packets are treated as successfully received. For example,
if the user wants to play the streaming audio with 1 % of
packet loss, the target value should be set to 99 %.
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4.1 Essential Results and Effects of Time of Day

We summarize results ofχ2-test in Table 1. The first and
second columns of Table 1 show the type of delay (RTT or
One-way) and measured time, respectively. Values ofλ̂2 for
four distributions are shown in columns 3 through 6. The
smallest value of̂λ2 among four distributions is shown in
bold. As an example, Figure 2 compares the distribution of
the measured RTTs with candidate probability functions in
busy hours (corresponding to the second row in Table 1).
We set the target value to 99% of the cumulative distribu-
tion. The distribution labeled by “Sample” is the tail part
(90–99.9%) of the cumulative density distribution of mea-
sured RTTs. The cumulative distribution of RTT values dur-
ing non-busy hours is shown in Figure 3, which corresponds
to the eighth row of the table. It also shows the tail part of
the measured RTTs’ distribution and candidate probability
functions.

We can observe from Table 1 thatλ̂2 of the Pareto
distribution is always smallest in all experiments, i.e., the
Pareto distribution is most suitable to estimate the 99% value
of cumulative distribution in busy hours (e.g., 11 PM† ) and
standard hours (e.g., 2 PM). It is applicable to both RTTs
and one-way delays.

To illustrate the importance of examining the tail part
of the distribution, we next present the case where theχ2-
test is applied to the entire cumulative distribution. Table 2
shows the result. Comparing with Table 1, the model deter-
mination method picked up different distributions (normal
or lognormal distribution), which were not observed when
examining only the tail part of distributions. Note that, when
the network is busy, the Pareto distribution which has heavy-
tail becomes most suitable. It coincides the past researches,
which showed that the distribution of packet delays is heavy-
tailed as the network becomes congested [15]. In Figure 4,
we can observe the significant increase of delay at 11 PM.
From 11 PM to around 1 AM, the delay becomes heavy-
tailed, because the ratio of long delay is larger then the other
period.

It is also worth noting that as we will describe in the
next section, we will apply the statistical results presented
in this section to on-line estimation of the delay, which is
necessary in adaptive playout control. Thus, we want a light-
weight estimation method for the delay distribution. Since
we found that the Pareto distribution is most appropriate re-
gardless of the ”time of day”, it is not necessary to examine
theχ2-test for each measurement, and we only have to de-
termine the parameters of the Pareto distribution. If the ap-
propriate model is varied according to the ”time of day”, we
need to examine theχ2-test for each playout controls. How-
ever, the computational overhead ofχ2-test is not small, and
it is inadequate for real-time applications.

†It is because NTT (one of largest carriers in Japan) offers the
service with unlimited accesses at a fixed charge from 11 PM to
8 AM.

Table 1 Results on Model Determination (Tail-Part of Delay Distribu-
tions) Nor. : Normal, Exp. : Exponential, Lognor. : Lognormal

Measurement Result ofχ2-test
Delay Type Hour Nor. Exp. Lognor. Pareto

RTT 10 PM 332.17 2371.91 266.60 79.75
RTT 11 PM 122.22 471.56 103.56 74.32
RTT 0 AM 156.09 670.34 128.86 58.45
RTT 1 AM 157.21 2189.33 139.47 49.81
RTT 2 AM 362.24 1691.48 242.74 115.28
RTT 7 AM 292.30 3598.50 240.55 124.03
RTT 10 AM 169.64 970.60 360.29 80.57
RTT 2 PM 147.02 599.37 250.51 56.25
RTT 7 PM 194.33 584.95 257.05 55.63

One-way 9 PM 83.82 602.56 71.96 19.56
One-way 11 PM 53.86 470.90 49.67 30.10
One-way 1 AM 55.06 426.46 49.99 24.01
One-way 5 AM 94.45 500.91 85.77 25.16
One-way 9 AM 107.76 754.09 98.74 45.33
One-way 12 PM 108.66 1218.95 101.09 30.61
One-way 3 PM 109.07 336.49 85.41 21.21

Table 2 Results on Model Determination (Entire Delay Distributions)
Nor. : Normal, Exp. : Exponential, Lognor. : Lognormal

Measurement Result ofχ2-test
Delay Type Hour Nor. Exp. Lognor. Pareto

RTT 11 PM 173.59 830.91 126.45 100.22
RTT 1 AM 164.39 1136.62 130.49 130.64
RTT 7 AM 154.59 1780.39 97.49 189.54
RTT 10 AM 21.09 49.27 32.16 36.873
RTT 2 PM 22.07 46.27 26.75 34.51

One-way 2 AM 4.71 25.43 2.33 3.51
One-way 4 AM 13.11 84.54 12.85 20.75
One-way 10 PM 20.93 268.79 20.19 281.81
One-way 5 PM 14.53 149.62 13.11 26.17
One-way 8 PM 4.18 5.55 5.22 16.96
One-way 11 PM 13.66 33.03 5.31 3.92
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Fig. 2 Comparisons among Sample and Candidate Functions (RTT,
11 PM)

4.2 Effects of Timescale

We next examine the effects of the timescale by changing
the number of samples for the parameter estimation. Fig-
ures 5(a) and 5(b) show the degree of differences against
the number of measured data for RTT and one-way delays,
respectively. We calculate the difference between 99% val-
ues of the Pareto distribution and those of the cumulative
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Fig. 4 Time Dependent Fluctuations of RTTs

distribution of collected samples. As shown in the figure,
the difference gets remarkable if the number of samples are
less than 500. On the other hand, we cannot observe critical
changes when the number of measurement data are equal to
or more than 500. Since our objective is to perform on-line
estimation of the delay distribution, it is preferable that the
number of sample is as small as possible, then the parame-
ter can be estimated faster with the less number of samples.
From the results, we can conclude that the required number
of measurements should be equal to or more than 500, in
which500× (99.9%− 90%) ∼= 50 samples are at least nec-
essary for the accurate parameter estimation of the Pareto
distribution. We will evaluate the required number of sam-
ples for quick and still accurate parameter estimation in the
next section.

5. Playout Time Estimation Method Based on Statisti-
cal Analysis

In this section, we propose a new playout control algorithm
in which playout time is determined based on our statistical
analysis. Then, we evaluate our playout control algorithm
by the trace-driven simulation, and we investigate an effec-
tiveness of the proposed algorithm.

5.1 Proposed Algorithm

To provide a high-quality communication in streaming ap-
plications, the packet loss ratio should be kept small. Be-
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Fig. 5 The Difference between Values of the Pareto Distribution and
Measured Data at the Target Value (99%).

cause packets arriving after the playout time is not meaning-
ful, playout time should be chosen carefully. In addition, the
playout control should provide some means to determine the
quality level of “real-time” transmission of the media that
the user is acceptable. The main goal of our algorithm is to
minimize the playout time while keeping the reproduction
quality specified by user’s requirements. We use the results
obtained through the statistical analysis presented in the pre-
vious section to determine the proper playout time.

More specifically, our playout algorithm records the
history of one-way delays of packets. On each packet ar-
rival, parameters of the Pareto cumulative density function
F (x) is updated to estimate the playout delayd i from the
equationF (di) = X whereX is the target value. Here, the
playout delay is a period from the time when the sender host
sends a packet to the time when the receiver host starts to
playout the received packet. Additionally, the playout time
pi is the expiration time that the receiver regards the packeti
as the valid data for streaming application, which is afterd i

seconds from the sender transfers the packeti. Furthermore,
we consider 95, 99, and 99.9% as the target valueX through
our numerical results. For example, if we chooseX = 95%,
our algorithm tries to minimize the playout time while keep-
ing the packet loss to be 5%. Of course, if the packet loss
within the network exceeds 5%, our method has no means
to keep the packet loss to be 5%. In what follows, we will
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assume that the packet loss within the network does not ex-
ceed the target value.

In the following subsections, we will provide the trace-
driven simulation results. A set of one-way delays of packets
collected from the operating Internet is used in our simula-
tion. The packet size was set to be 160 Bytes, and an interval
of packet emissions is fixed at 80 msec. Then, we estimate
the playout timepi of the packeti according to the algo-
rithm. In our simulation, we check whether the next packet
arrives within the estimated playout time or not, and if the
packet does not arrive, it is treated as packet loss. We note
here that in an actual implementation, some control is nec-
essary to return the collected information from the receiver
to the sender, but we do not consider it here. Such infor-
mation may be lost in the actual Internet, but it is also not
considered in the simulation.

5.2 Parameter Setting

In our algorithm, the number of measurements for the pa-
rameter estimation becomes a dominant factor. The accu-
racy of parameter estimation can be improved by increasing
the number of measurement data. However, the larger num-
ber of samples inhibits to follow the dynamic changes of the
network condition, and the playout control cannot follow a
drastic variation of one-way delays. We then investigate how
many number of samples is adequate for playout control.
Note that the minimum number of samples should be 500
to estimate accurate parameters of the Pareto distribution as
described in the Subsection 4.2.

We now demonstrate the influence of the number of
samples on the playout control by changing the number of
delays for the parameter estimation. The results of exper-
iments are shown in Figure 6. Figure 6(b) shows the four
variations of playout delay evaluated by the simulation with
the traced data shown in Figure 6(a); we change the num-
ber of samples to be 500, 1,000, 1,500 or 2,000. From Fig-
ure 6(b), it is clear that the smaller the number of samples is,
the more quickly the playout delay follows the delay varia-
tion. This result shows the smaller number of samples is
better to follow the changes of delay. Next, in Figure 6(c),
the packet loss ratio is plotted against the number of sam-
ples. In this figure, we plot four cases of the busiest (11 PM)
and non-busy hours (2 PM, 3 AM, 9 AM), and we set the
target packet loss ratio to be 1%. In Figure 6(c), we cannot
observe a significant improvements at any case even if the
number of samples is large. From this result, we consider
there is a trade-off relationship between the improvement of
accuracy with the increased number of samples in parameter
estimation and the degradation of adaptability to delay vari-
ations. However, the less number of samples in parameter
estimation means the less computing, which would be desir-
able for the real-time applications. Based on above results,
the number of samples can be set to be 500 for parameter
estimation of playout controls in our algorithm.
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5.3 Performance Comparisons

For comparison purpose, we also examined three algorithms
which have been proposed in [6], [8]. Note here that we re-
fer to our proposed algorithm asAlgorithm 1 throughout
this section.

In Algorithm 2, the playout time is determined from
the approximated values of the meand̂i and variancêvi of
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Table 3 Comparison of PLR and Mean Playout Delay

Hour Algorithm Target PLR [%] Mean ofdi [ms]

95% 5.13 221.17
1 99% 1.37 265.12

99.9% 0.14 855.38
11 PM 2 - 2.54 237.36

3 - 0.08 734.90
4 - 3.95 230.72

95% 5.42 247.66
1 99% 1.08 270.11

99.9% 0.10 386.23
3 AM 2 - 1.18 273.96

3 - 0.05 555.51
4 - 2.96 258.53

95% 5.32 242.67
1 99% 1.34 267.29

99.9% 0.10 414.48
2 PM 2 - 1.49 259.19

3 - 0.04 466.57
4 - 3.08 252.50

one-way delays, which are given by

pi = ti + d̂i + 4v̂i, (12)

d̂i = αd̂i + (1 − α)ni, (13)

v̂i = αv̂i + (1 − α)|d̂i − ni|. (14)

That is, the playout time is decided without a knowledge on
the delay distribution.Algorithm 3 is a modified version of
Algorithm 2, which uses the weighted mean ofd̂′

is as

d̂′
i =

{
βd̂′

i−1 + (1 − β)ni if ni > d̂′
i−1,

αd̂′
i−1 + (1 − α)ni otherwise,

(15)

whereα andβ are constant values, satisfying0 < β < α <
1. We setα = 0.998500 and β = 0.750000 by follow-
ing [6] . Algorithm 4 focuses onspike which represents a
sudden and large increase in delays on a sequence number
of packets. Examples of spikes are shown at 16,130, 16,170
and 16,200 in Figure 7(a).Algorithm 4 usually obtains the
playout time from Eq. (13), which is same asAlgorithm 2.
During spike, on the other hand,Algorithm 4 uses the fol-
lowing equation;

d̂i = d̂i−1 + ni − ni−1, (16)

to catch up the sudden increase of delays. InAlgorithm 4,
we useα = 0.875.

Table 3 compares packet loss ratios (PLRs) and mean
values of the playout delay in three periods. Each period is
about an hour. InAlgorithm 1, we used 95, 99, and 99.9%
as the target values. We can observe that there is a clear
trade-off between PLR values and the playout delay. Note
again that the purpose of our proposedAlgorithm 1 is that
the value of PLR can be kept close to the packet loss ratio
requested by users. These results show that PLR inAl-
gorithm 1 is almost satisfied with the intended packet loss
ratio (1−X). Although the target PLRs ofAlgorithms 2, 3
and4 are 0%, the results show that playout time is extremely
enlarged in spite that longer playout time makes it difficult to
playback in real-time. Of course, the PLRs ofAlgorithms 2

through4 might be controlled by changing the multiplier of
v̂i, which is currently set to be 4 (see Eq. (13)). However,
the fundamental problem is that there is no means to map
the multiplier to the value of PLR in those algorithms. On
the other hand, we can observe that our proposed algorithm
can control the playout time so that PLR is kept close to the
target packet loss ratio with accuracy. Namely, it is possible
for our proposed playout control to keep the target packet
loss ratio in any hour.

Figure 7 compares the playout delay variation among
four algorithms in each period of Table 3. InAlgorithm 1,
we set the target valueX to be 99%, and the PLR of each
algorithm is also shown by the number in parentheses. Note
here that PLRs in Figures 7 and Table 3 are different; e.g.,
2.54% at (11PM,Algorithm 2) in Table 3, and 5.95% in
Figure 7(a). It is because different numbers of samples
are used to calculate the mean PLR. From these figures,
we can find thatAlgorithm 3 has a tendency to overesti-
mate the playout delay, which is twice as large as that of
Algorithm 1. Especially, in Figure 7(a), the playout de-
lay increases up to 1 sec during busy hours. On the other
hand,Algorithm 2 always computes the smallest playout
delay, which leads to many packet losses. Additionally, Fig-
ure 7(a) shows thatAlgorithm 2 cannot follow the varia-
tion of packet delays adaptively, and therefore,Algorithm 2
is not suitable during busy hours as expected. Figure 7(a)
also shows thatAlgorithm 4 can follow the drastic change
of delays because of the spike detection. As shown in Fig-
ures 7(b) and 7(c), however,Algorithm 4 is too sensitive
from the spike in which the number of packets is quite small.
It sometimes misleads to unnecessary increase of playout
delay.

In summary, our simulation results show thatAlgo-
rithms 2, 3, and4 cannot keep the small PLR by the heavy
fluctuation of packet transmission delays. On the other hand,
we can conclude that our algorithm is superior to others on
which Algorithm 1 provides a stable PLR specified by the
user regardless of arbitrary delay changes.

6. Concluding Remarks

In this paper, we have measured packet transmission delays
and analyzed their characteristics by taking into account the
time of day. From statistically analytic results, we have
found that the Pareto distribution is most appropriate as the
model of one-way delay distribution, as well as RTT distri-
butions.

Moreover, we have proposed a playout control algo-
rithm based on our analysis. Numerical examples have
shown that our proposed method can control the playout
time with satisfying the target packet loss probability. For
future research topics, it is necessary to consider the update
process of the playout time in order to apply our algorithm
to streaming applications.
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Fig. 7 Playout Delay Variations of Algorithms 1 through 4
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