
Fairness Comparisons between TCP Reno and TCP Vegas
for Future Deployment of TCP Vegas

Kenji Kurata† Go Hasegawa‡ Masayuki Murata†

†Department of Informatics and Mathematical Science
Graduate School of Engineering Science, Osaka University

1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Phone: +81-6-6850-6616, Fax: +81-6-6850-6589
E-mail: {k-kurata, murata}@ics.es.osaka-u.ac.jp

‡Faculty of Economics, Osaka University
1-7, Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Phone: +81-6-6850-5233
E-mail: hasegawa@econ.osaka-u.ac.jp

Abstract TCP Vegas version is expected to achieve higher throughput than TCP Tahoe
and Reno versions, which are currently used in the Internet. However, we need to consider
a migration path of TCP Vegas when it is deployed in the Internet. In this paper, we focus
on the situation where multiple TCP Reno and Vegas connections coexist at the bottleneck
router, by which the fairness property is investigated to seek the possibility of future deploy-
ment of TCP Vegas. We consider drop-tail and RED (Random Early Detection) algorithms
as buffering discipline at the router, and evaluate the effect of RED algorithm on fairness en-
hancement. From the analysis and the simulation results, we have found the results that the
fairness between TCP Reno and Vegas can not be kept at all with drop-tail router. Although
RED algorithm improves the fairness to some degree, there are inevitable trade-off between
fairness and throughput.

1

1 Introduction

TCP (Transmission Control Protocol) is widely used by many Internet services including

HTTP (and World Wide Web) and FTP (File Transfer Protocol). Thus, even if the network in-

frastructure may change in the future Internet, TCP and its applications would be likely to be

continuously used. However, TCP Tahoe and Reno versions (and their variants), which are

widely used in the current Internet, are not perfect in terms of throughput and fairness among

connections, as having been shown in the past literatures. Therefore, active researches on

TCP have made great efforts to propose many improvement mechanisms of TCP (for exam-

ple, see [1-4] and the references therein).

Among them, TCP Vegas version [5, 6] is considered to be one of the promising mecha-

nisms in its high performance. TCP Vegas enhances the congestion avoidance algorithm of

TCP Reno. More specifically, TCP Vegas dynamically increases/decreases its sending win-

dow size according to observed RTTs (Round Trip Times) of sending packets, whereas TCP

Tahoe/Reno only continues increasing its window size until packet loss is detected. For in-

stance, the authors in [5] concludes through simulation and implementation experiments that

TCP Vegas can obtain 40% higher throughput than TCP Reno.

However, we need to consider a migration path when the new protocol is deployed in

the operating network, i.e., the Internet. That is, it is important to investigate the effect of

traditional TCP versions (Tahoe and Reno) on TCP Vegas in the case where those different

versions of TCP co-exist in the network. The authors in [7] have pointed out that when con-

nections of TCP Reno version and Vegas version share the bottleneck router, the Vegas con-

nection may suffer from significant unfairness. However, the authors have assumed that only

a single TCP Reno connection shares the link with another TCP Vegas connection, and no so-

lution has been provided for fairness enhancement.

In this paper, therefore, we focus on the situation where multiple TCP Reno and Vegas

2

connections coexist at the bottleneck router, and investigate the fairness property between

two versions of TCP to seek the possibility of future deployment of TCP Vegas in the Internet.

One important point is that the RED mechanism [8] is now being introduced while the original

Vegas does not assume it. It may or may not be suitable to the RED mechanism. We therefore

consider two mechanisms, drop-tail and RED routers, in our study. One of the contributions

in this paper is to derive analysis results of the throughput of TCP Reno and Vegas in such

situation. We further present the accuracy of our analysis by comparing the analysis results

with the simulation results.

Through the analysis and simulation results, we evaluate the essential fairness property

between TCP Reno and Vegas as follows. TCP Vegas receives significant unfair throughput

compared with TCP Reno, when the router employs the drop-tail router. When the RED al-

gorithm is applied, the fairness can be improved to some degree, but there exists an inevitable

trade-off between fairness and throughput. That is, if the packet dropping probability of RED

becomes large, fairness between TCP Reno and Vegas is improved, but the total throughput

is degraded at the same time.

The rest of this paper is organized as follows. Section 2 briefly introduces the congestion

control mechanisms of TCP Reno and TCP Vegas. We next describe the network model used

in our analysis and simulation experiments in Section 3. Section 4 shows the analysis results

of fairness between the two versions of TCP, which are validated by the simulation results in

Section 5. Finally, we conclude our presentation and present some future works in Section 6.

2 Congestion Control Mechanisms of TCP

In this paper, we consider two versions of TCP; TCP Reno and Vegas versions. For detailed

explanation, refer to [9] for TCP Reno and [5, 6] for TCP Vegas.

TCP adopts a window-based flow control, which controls the number of on-the-fly pack-

3

ets in the network. The source terminal is allowed to send the number of packets given by its

window size. The current window size of the source terminal is often denoted by cwnd. The

window size is updated at the receipt of ACK (ACKnowledgement) packet. The key idea of

the congestion avoidance mechanism of TCP is to dynamically control the window size ac-

cording to severity of the congestion in the network. In what follows, we denote the current

window size at time t by cwnd(t).

2.1 TCP Reno

In TCP Reno, the window size is cyclically changed. The window size continues to be in-

creased until packet loss occurs. TCP Reno has two phases in increasing its window size;

Slow Start Phase and Congestion Avoidance Phase. When an ACK packet is received by

TCP at the server side at time t + tA [sec], cwnd(t + tA) is updated from cwnd(t) as follows

(see, e.g., [9]);

cwnd(t + tA) =

(Slow Start Phase :)

cwnd(t) + 1, if cwnd(t) < ssth;

(Congestion Avoidance Phase :)

cwnd(t) +
1

cwnd(t)
, if cwnd(t) ≥ ssth;

(1)

where ssth [packets] is the threshold value at which TCP changes its phase from Slow Start

Phase to Congestion Avoidance Phase. When packet loss is detected by retransmission time-

out expiration [9], cwnd(t) and ssth are updated as;

cwnd(t) = 1 (2)

ssth =
cwnd(t)

2
(3)

4

On the other hand, When TCP detects packet loss by fast retransmit algorithm [9], it changes

cwnd(t) and ssth as follows;

ssth =
cwnd(t)

2
(4)

cwnd(t) = ssth (5)

TCP Reno then enters Fast Recovery Phase [9] if the packet loss is found by fast retransmit

algorithm. In this phase, the window size is increased by one packet when a duplicate ACK

packet is received, and cwnd(t) is restored to ssth when the non–duplicate ACK packet cor-

responding to the retransmitted packet is received.

2.2 TCP Vegas

In TCP Reno (and the older version Tahoe), the window size continues to be increased until

packet loss occurs due to congestion. Then, when the window size is throttled because of

packet loss, the throughput of the connection may degrade. However, it cannot be avoided

because of an essential nature of the congestion control mechanism adopted in TCP Reno.

That is, it can detect network congestion only by packet loss. However, throttling the window

size is not adequate when the TCP connection itself causes the congestion because of its too

large window size. If the window size is appropriately controlled such that the packet loss

does not occur in the network, the throughput degradation due to the throttled window can

be avoided. This is the reason that TCP Vegas was introduced.

TCP Vegas employs another mechanism, in which it controls its window size by observ-

ing RTTs (Round Trip Time) of packets that the connection has sent before. If observed RTTs

become large, TCP Vegas recognizes that the network begins to be congested, and throttles

the window size. If RTTs become small, on the other hand, TCP Vegas determines that the

network is relieved from the congestion, and increases the window size again. Then, the win-

5

dow size in an ideal situation becomes converged to the appropriate value. More specifically,

in Congestion Avoidance Phase, the window size is updated as;

cwnd(t + tA) =

cwnd(t) + 1, if diff < α
base rtt

cwnd(t), if α
base rtt

≤ diff ≤ β
base rtt

cwnd(t) − 1, if β
base rtt

< diff

(6)

diff =
cwnd(t)

base rtt
− cwnd(t)

rtt

where rtt [sec] is an observed round trip time, base rtt [sec] is the smallest value of observed

RTTs, and α and β are some constant values.

TCP Vegas has an another feature in its congestion control algorithm. That is slow Slow

Start mechanism. The rate of increasing its window size in Slow Start Phase is a half of that

in TCP Tahoe and TCP Reno. Namely, the window size is incremented at every other time an

ACK packet is received. Note that Equation (6) used in TCP Vegas indicates that if observed

RTTs of the packets are identical, the window size remains unchanged.

According to [5], TCP Vegas can achieve over 40% higher throughput than TCP Reno,

which has been confirmed through simulation and implementation experiments. However, it

has not been validated whether TCP Vegas could work well with TCP Reno or not. One of

the things we want to do in this paper is to investigate that, that is, the fairness between the

two versions of TCP when they co-exist in the network. We believe that it is very important

to deploy TCP Vegas to the future Internet.

3 Network Model

Figure 1 shows the network model used in this paper. It consists of Nr sender hosts using TCP

Reno (SR1, ... SRNr), Nv sender hosts using TCP Vegas (SV1, ... SVNv), a receiver host, a

6

Router
Receiver Host

Sender Hosts
SR 1

SR Nr

SV 1

SV Nv

bw [Mbps]
BW [Mbps]

Buffer: B [packets]

bw [Mbps]

bw [Mbps]

bw [Mbps]

τsx [sec] τxd [sec]

τ [sec]

TCP Reno
Hosts

TCP Vegas
Hosts

Figure 1: Network Model

intermediate router and links that connect the router and the sender/receiver hosts. The band-

width of each link between sender hosts and the router is bw [Mbps]. The bandwidth of the

bottleneck link between the router and the receiver host is BW [Mbps] = µ [packets/sec]. The

size of the buffer in the router is B [packets], and the propagation delay between sender hosts

and the router, and that between the router and the receiver host are τsx [sec] and τxd[sec], re-

spectively. We denote the total propagation delay between the sender hosts and the receiver

host by τ , which equals τsx + τxd. As the buffering discipline at the router, we use drop-tail

and RED (Random Early Detection) [8] algorithms. We further assume that the sender hosts

have infinite amount of sending data.

7

B
uf

fe
r

O
cc

up
an

cy
 [p

ac
ke

ts
] B

Time [sec]

TCP Reno’s
Packet

TCP Vegas’
Packet

RTT

1 Cycle

Figure 2: The Typical Change of Total Buffer Occupancy at the Drop-tail Router

4 Analysis

In what follows, we use the network model depicted in Figure 1, and derive average through-

put of each TCP connection through mathematical analysis. In the analysis, we assume that

the throughput of each connection becomes proportional to buffer occupancy at the router.

This assumption is appropriate for the drop-tail router, and for the RED router where the ad-

ditional function is attached to the drop-tail router.

4.1 Case of Drop-tail Router

Figure 2, we model the typical change of the total number of packets in the router buffer if

we use drop-tail algorithm. Since TCP Reno connections continue to increase their window

sizes until packet loss occurs at the buffer, the change of the window size also has cycles in

the this case, where the TCP Reno connections co-exist with the TCP Vegas connection in

the bottleneck touter. Furthermore, if we assume that all packet losses can be detected by

Fast Retransmit algorithm [9], It takes 1 RTT (Round Trip Time) [sec] for sender side TCP

to detect the packet loss until the packet loss really occurs at the route buffer. This is depicted

8

the flat part of the change of the window size in Figure 2.

TCP Vegas connections, on the other hand, control their window size according to the

observed RTTs of sending packets. In more detail, they try to keep the number of buffered

packets in the router buffer from α to β [packets] [4]. If RTTs continue to become larger,

TCP Vegas connections continue to decrease their window size. In this case, since TCP Reno

connections continue increasing their window size regardless the increase of RTT, the RTTs

for TCP Vegas connections also become larger. This results that the window sizes of the TCP

Vegas connections decrease to reach within the range from α to β [packets], in accordance

with Eq. (6). Therefore, Wv [packets], the total window size of the TCP Vegas connections,

is obtained as follows;

Nv · α < Wv < Nv · β (7)

As the reasonable assumption, we determine Wv [packets], the average value of Wv , from

Eq. (7) as follows;

Wv = Nv · α + β

2
(8)

On the other hand, TCP Reno connections continue increasing their window size until the

router buffer becomes full. Accordingly, Wr [packets], the total window size of the TCP Reno

connections when packet loss occurs at the router buffer, can be calculated;

Wr = 2τµ + B − Wv (9)

The number of packet losses in one buffer overflow becomes Nr [packets], since from Eq. (1),

the window sizes of TCP Reno connections are increased by 1 [packet/RTT], according to

the Congestion Avoidance Phase explained in Section 2. When we assume that packet loss

9

probability for each connection is proportional to its window size, we can obtain Lr [packets]

and Lv [packets], which are the number of packet losses of TCP Reno and Vegas connections

in the one buffer overflow, as follows;

Lr = Nr · Wr

Wr + Wv
(10)

Lv = Nr · Wv

Wr + Wv
(11)

The TCP Reno connections which detect the packet loss halve their window sizes according

to the fast retransmit algorithm. Therefore, W ′
r [packets], the total window size of the TCP

Reno connections just after the buffer overflow, can be calculated from Eq. (1) and (10);

W ′
r =

1

2
· Wr

Nr
· Lr +

Wr

Nr
· (Nr − Lr)

=
Wr + 2Wv

2(Wr + Wv)
· Wr (12)

From Figure 2 and Eq. (1), we can derive Wr [packets], which is the average value of the total

window size of the TCP Reno connections;

Wr =
1
2
(Wr + W ′

r)
Wr−W ′

r

Nr
+ Wr

Wr−W ′
r

Nr
+ 1

(13)

Accordingly, we can obtain Br [packets] and Bv [packets], the average number of packets at

the router buffer of each version of TCP, as follows;

Br = Wr · B

2τµ + B
(14)

Bv = Wv · B

2τµ + B
(15)

Finally, we can calculate ρr [packets/sec], ρv [packets/sec], the average throughput of the

10

connections of the two versions of TCP, since we have assumed that they become proportional

to the buffer occupancy at the router. The result is as follows;

ρr = µ · Br

Br + Bv
(16)

ρv = µ · Bv

Br + Bv
(17)

4.2 Case of RED Router

RED algorithm drops incoming packets at the preset probability when the number of packets

in the buffer exceeds a certain threshold value [8]. For simplicity of the following analysis,

it is assumed that all packet loss are occurred at the probability p by the RED algorithm, and

no buffer overflow takes place.

Even with the RED algorithm, the TCP Reno connections continue increasing their win-

dow sizes until packet loss occurs. Therefore, as in the drop-tail case, the TCP Vegas con-

nections can not open their window sizes and keep them ranging from α to β. Therefore, the

following equations are satisfied for Wv and Wv;

Nv · α < Wv < Nv · β (18)

Wv = Nv · α + β

2
(19)

TCP Reno connections, on the other hand, change their window size cyclically triggered

by packet losses, as in the drop-tail router case. Since all arriving packets are dropped at

the router with probability p by our assumption, the connection can send 1/p packets in one

cycle (between the events of packet losses) on the average. We define the number of packets

transmitted during one cycle as Np, that is, Np = 1/p. Different from the previous Subsection

of drop-tail router case, we focus on a certain TCP Reno connection because we assume that

all TCP Reno connections behave identically under the RED’s stochastic packet dropping

11

algorithm.

Although the RED algorithm can eliminate the bursty packet losses leading to TCP’s re-

transmission timeout expiration, timeout expiration cannot be avoided perfectly [10]. Even

if timeout expiration rarely happens, the effect of timeout expiration on throughput is large.

Therefore, we consider the throughput degradation caused by retransmission timeout expira-

tion. We denote the probability of occurring timeout expiration in the window by pto. As we

denote the average value of the window size of a certain TCP Reno connection when packet

loss is detected by wr, we can determine pto according to the following simple equation;

pto =
wr∑
i=2

(
wr

i

)
· pi · (1 − p)wr+1−i (20)

In what follows, we distinguish two methods of detecting packet loss; retransmission timeout

expiration (TO case) and fast retransmit (FR case), because the two cases have the different

algorithms of changing the window size.

If retransmission timeout expiration occurs (TO case), the window size is reset to 1 [packet]

and it is updated according to the Slow Start Phase (Eq. (1)), until it reaches wr/2 [packets].

From Eq. (1), we can derive Tto,1 [sec], which is the time duration of the Slow Start Phase,

and Ato,1 [packets], which is the number of packets transmitted in the Slow Start Phase. That

is,

Tto,1 = rtt · log2

wr

2
(21)

Ato,1 =
wr

2
− 1 (22)

where rtt [sec] is the mean value of RTT of sending packets. Furthermore, we can easily ob-

tain Tto,2 [sec] and Ato,2 [packets], which are the time duration and the number of transmitted

12

packets in the following Congestion Avoidance Phase from Eq. (1).

Tto,2 = rtt ·
(
wr − wr

2

)
(23)

Ato,2 =
1

2

(
wr +

wr

2

)(
wr − wr

2

)
(24)

These equations are determined from that the window size is increased by 1 [packet] per

RTT [sec] in the Congestion Avoidance Phase (Eq. (1)).

On the other hand, if the TCP Reno connection detects the packet loss by Fast Retransmit

algorithm (FR case), The window size is halved to wr/2, and the Congestion Avoidance Phase

starts again. That is, the time durations and the number of transmitted packets in the Slow

Start Phase (Tfr,1 and Afr,1) and the Congestion Avoidance Phase (Tfr,2 and Afr,2) can be

derived as follows;

Tfr,1 = 0 (25)

Afr,1 = 0 (26)

Tfr,2 = rtt ·
(
wr − wr

2

)
(27)

Afr,2 =
1

2

(
wr +

wr

2

)(
wr − wr

2

)
(28)

Consequently, the following equations are satisfied for the number of transmitted packets in

one cycle, and wr from Eqs.(21)-(28);

1

p
= pto(Ato,1 + Ato,2) + (1 − pto)(Afr,1 + Afr,2) (29)

wr = rtt ·
(
pto

(
Ato,1 + Ato,2

Tto,1 + Tto,2 + rto

)
+ (1 − pto)

(
Afr,1 + Afr,2

Tfr,1 + Tfr,2

))
(30)

where rto [sec] is the retransmission timeout value of the connection. Since we can obtain

pto and wr by solving Eqs. (29) and (30), the total window size of all TCP Reno connections,

13

Wr, can be easily obtained as follows;

Wr = Nr · wr (31)

Finally, ρr and ρv in the RED case can be determined as similarly to the drop-tail router case,

from Eqs.(14)-(16), (18), and (31).

5 Numerical Examples and Discussions

We next show some numerical examples of the analysis results, which is validated by compar-

ing them with simulation results. Furthermore, we present some discussions on the fairness

between the two versions of TCP, using the numerical results.

In what follows, we use the network model depicted in Figure 1, and set τsx = 0.0015 [sec],

τxd = 0.005 [sec], bw = 10 [Mbps] and BW = 1.5 [Mbps]. For the RED router, we set the

threshold values: thmin = 5 [packets] and thmax = 0.6·B [packets].

5.1 Case of Drop-Tail Router

Figure 3 shows the average throughput of the TCP Reno connections and the TCP Vegas con-

nections, as a function of the router buffer size B [packets] in drop-tail router case. We con-

sider three cases of the number of connections of TCP Reno and Vegas (Nr and Nv); Fig-

ure 3(a) for Nr = 5, Nv = 5, Figure 3(b) for Nr =5, Nv = 10, and Figure 3(c) for Nr = 10

Nv = 5. In these figures, we show both of the analysis results and the simulation results for

validating our analysis in Section 4. We can say from these figures that our analysis gives

appropriate estimations of throughput, regardless of the number of connections of the two

versions of TCP. However, especially when the router buffer size is very small (< 20 [pack-

ets]), the analysis results under-estimate the throughput of the TCP Reno connections, and

14

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(a) Nr = 5, Nv = 5.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(b) Nr = 5, Nv = 10.

0

20

40

60

80

100

120

140

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(c) Nr = 10, Nv = 5.

Figure 3: Case of Drop-Tail Router

over-estimate that of TCP Vegas connections. This is because the assumption in the analysis,

that the window sizes of TCP Vegas connections are fixed at Wv = (α + β)/2, can not be

satisfied when the buffer size is too small.

The another important observation obtained from these figures is that the TCP Vegas con-

nections suffer from significantly low throughput, compared with the TCP Reno connections.

This is because of the difference of buffer occupancy at the router. The TCP Reno connec-

tions can increase their window sizes until the buffer becomes full and packet loss occurs. On

the other hand, the TCP Vegas connections can not inflate their window size larger than β, as

15

have pointed out in the Section 4. That is, the larger the router buffer size becomes, the worse

the fairness between the TCP Reno connections and the TCP Vegas connections becomes.

In short, this serious unfairness is caused by the difference of the congestion control al-

gorithm of the two versions of TCP, and the drop-tail algorithm at the router buffer. We con-

clude that the drop-tail router can not provide fairness between TCP Reno and TCP Vegas

connections when they share the bottleneck router in the network.

5.2 Case of RED Router

Figure 4 shows the result of the case where RED algorithm is adopted at the router buffer. We

first set p, the packet dropping probability, to 1/30. In the figure, we can see that the analysis

results are not effected by the router buffer size. This is because we have assumed in our

analysis that the packet dropping probability is constant, and that all packet drops are caused

by the stochastic dropping of RED algorithm, not by the buffer overflow. On the other hand,

we can also find from this figure that the simulation results are affected by the buffer size,

especially when the buffer size is small. This is because the packet loss occurs by buffer

overflow, as well as by the stochastic packet dropping of the RED algorithm. Taking this

observations into consideration, we can again say that our analysis results can approximate

the throughputs of the connections of the two versions of TCP with the appropriate accuracy,

especially when the buffer size is large.

We further present some discussions from these figures that the fairness between the two

versions of TCP greatly improves, compared with the case of drop-tail router. This can be ex-

plained as follows. With the RED algorithm, the TCP Reno connections can not inflate their

window sizes until the router buffer becomes fully-utilized, since packet loss occurs before

the buffer becomes full, which is caused by RED algorithm. That results in the deteriora-

tion of buffer occupancy of the TCP Reno connections, that decreases the difference of the

throughput of the TCP Reno and Vegas connections.

16

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(a) Nr = 5,Nv = 5.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(b) Nr = 5, Nv = 10.

0

20

40

60

80

100

120

140

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(c) Nr = 10, Nv = 5.

Figure 4: Case of RED Router: p = 1
30

From the above discussion, we may expect that if the packet dropping probability is fur-

ther increased, the fairness can be further improved because the window sizes of the TCP

Reno connections becomes still smaller. This observation can be confirmed by Figure 5,

where we increase the packet dropping probability to 1/10. We can see the further fairness

enhancement by comparing this figure with Figure 4.

As we can naturally guess, however, if the packet dropping probability of RED algorithm

is set too high for further fairness improvement, we can not avoid the degradation of the total

17

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(a) Nr = 5, Nv = 5.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(b) Nr = 5, Nv = 10.

0

20

40

60

80

100

120

140

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(c) Nr = 10, Nv = 5.

Figure 5: Case of RED Router: p = 1
10

throughput. Figure 6 shows the simulation results of the throughput of the TCP Reno connec-

tions , that of the TCP Vegas connections, and the total throughput at the router, as a function

of p, the packet dropping probability of RED algorithm. We set Nr = 5, Nv = 5, and B =

100 [packets] to obtain this figure. We can see from the figure that when the packet drop-

ping probability becomes too large (> 0.01), the fairness between the two versions of TCP

improves, while the total throughput degrades. In other words, there is an inevitable trade-

off between fairness and throughput in the RED algorithm, therefore it is difficult to set p to

18

0

50

100

150

200

250

300

1e-05 0.0001 0.001 0.01 0.1
T

hr
ou

gh
pu

t [
K

bp
s]

Packet Dropping Probability p

TCP Reno

TCP Vegas

Total

Figure 6: Throughput vs. Packet Dropping Probability of RED algorithm

appropriate value.

6 Conclusion

In this paper, we have investigated the fairness between TCP Reno and Vegas, when the TCP

connections of the two versions share the bottleneck link. We have derived the following

results through the mathematical analysis and the simulation experiments; TCP Vegas suf-

fers from serious performance degradation with drop-tail routers, because of the difference

of buffer occupancy of the router buffer. RED routers can improve the fairness to some de-

gree, but we have also revealed that there exists an inevitable trade-off between fairness and

throughput.

As the future works, we plan to propose the two kinds of modification for further fairness

enhancement. The first one is to improve the congestion control algorithm of TCP Vegas to

compete equally with TCP Reno. The second is to modify the RED algorithm at the router

buffer so that the router can detect mis-behaving flows, which correspond to TCP Reno con-

nections in this research, and eliminate the unfairness by intentionally dropping more packets

from the mis-behaving flows than well-behaved flows.

19

References

[1] Z. Wang and J. Crowcroft, “Eliminating periodic packet losses in 4.3–Tahoe BSD TCP conges-
tion control,” ACM Computer Communication Review, vol. 22, pp. 9–16, April 1992.

[2] M. Perloff and K. Reiss, “Improvements to TCP performance,” Communications of ACM,
vol. 38, pp. 90–100, February 1995.

[3] M. Mathis and J. Mahdavi, “Forward acknowledgment: Refining TCP congestion control,” ACM
SIGCOMM Computer Communication Review, vol. 26, pp. 281–291, October 1996.

[4] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and stability of the congestion control
mechanism of TCP,” in Proceedings of IEEE INFOCOM’99, pp. 1329–1336, March 1999.

[5] L. S. Brakmo, S. W.O’Malley, and L. L. Peterson, “TCP Vegas: New techniques for congestion
detection and avoidance,” in Proceedings of ACM SIGCOMM’94, pp. 24–35, October 1994.

[6] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion avoidance on a global
Internet,” IEEE Jounal on Selected Areas in Communications, vol. 13, pp. 1465–1480, October
1995.

[7] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and comparison of TCP reno and
vegas,” in Proceedings of IEEE INFOCOM’99, March 1999.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”
IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, August 1993.

[9] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts: Addison-
Wesley, 1994.

[10] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno, and SACK TCP,” ACM
SIGCOMM Computer Communication Review, vol. 26, pp. 5–21, July 1996.

20

