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Abstract

A window-based flow control mechanism is a sort of
feedback-based congestion control mechanisms, and has
been widely used in current TCP/IP networks. Recently
proposed TCP Vegas is another version of the TCP mech-
anism and has potential to achieve much better perfor-
mance than current TCP Tahoe and Reno. However, it
has not been fully investigated how to determine control
parameters of TCP Vegas. In this paper, we focus on a
window-based flow control mechanism based on a con-
gestion avoidance mechanism of TCP Vegas, and analyze
its stability and transient behavior using a control theoretic
approach. We show that the system stability is quite sen-
sitive to the control parameter of the window-based flow
control mechanism, and that its optimal value is particu-
larly dependent on the end-to-end propagation delay. We
also demonstrate that its performance can be dramatically
improved by dynamically adjusting its control parame-
ters based on our analytic results. We further investigate
a buffer dimensioning issue at the router, and derive the
condition for achieving full link utilization and preventing
packet loss.

1 Introduction

In a packet-switched network, a feedback-based conges-
tion control mechanism is essential to provide data trans-
fer services efficiently. Its main objective is to prevent
packet losses in the network, and to utilize network re-
sources effectively. The current Internet uses a window-
based flow control mechanism in its TCP (Transmission
Control Protocol), as the feedback-based congestion con-
trol mechanism. As an example, a version of TCP mech-
anism called TCP Reno uses packet losses in the network
as feedback information since packet losses implies con-
gestion occurrence in the network [1, 2]. Until packet loss
occurs, TCP Reno gradually increases its window size that

limits the number of in-flight packets in the network. As
the window size is over its available bandwidth, excess
packets are queued at the buffer of intermediate routers for
some period. If the window size increases further, packets
at the buffer of the router overflows, leading packet losses.
The source host detects occurrence of packet losses in the
network from, for example, the timeout mechanism, and
reduces its window size to one packet. TCP Reno has an-
other mechanism called fast retransmit to detect packet
losses, which is triggered by receipt of duplicate ACK
packets. After reduction of the window size, congestion
in the network is remedied so that congestion is relieved.
The source host then increases its window size again. In
short, the congestion control mechanism of TCP Reno
first increases its window size, and as soon as it detects
packet losses in the network, it reduces its window size.
TCP Reno repeats this process indefinitely during the con-
nection.

Another version of TCP called TCP Vegas has been
proposed by Brakmo et al., which can achieve better per-
formance than TCP Reno [3, 4]. TCP Vegas has follow-
ing advantages over TCP Reno: (1) a new retransmission
mechanism, (2) an improved congestion avoidance mech-
anism that controls buffer occupancy, and (3) a modified
slow-start mechanism. With these features, it has been re-
ported in [4] that total throughput of TCP Vegas becomes
37–71 % better than TCP Reno, and that the number of re-
transmitted packets of TCP Vegas can be reduced to about
1/5–1/2 of TCP Reno. In [5], it has been reported that
TCP Vegas keeps less data in the network than TCP Reno,
resulting in shorter RTT average and variances. The per-
formance improvement is mainly achieved by the conges-
tion avoidance mechanism of TCP Vegas, which uses a
measured round-trip time of the packet — i.e., duration
between the source host sends a packet and it receives
its corresponding ACK (acknowledgment) packet. More
specifically, TCP Vegas measures a round-trip time of a
packet, and estimates the number of queued packets in the
router’s buffer. It then controls its window size to make it
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constant. There is no need for the source host to wait for
packet losses to know occurrence of congestion in the net-
work. The window size of TCP Vegas becomes stabilized
when the network is in steady state, and therefore it can
achieve much better throughput than TCP Reno.

However, most of past studies regarding window-based
flow control mechanisms have primarily focused on their
performance evaluation. That is, ad hoc control parame-
ters (e.g., an amount of window size increase and/or de-
crease) are used in those studies, and their performance
metrics are through simulation experiments. Therefore,
an approach to determine adequate control parameters is
of great necessity to utilize network resources efficiently.
Since window-based congestion control is essentially a
feedback-based control mechanism, we hope that a con-
trol theoretical approach is quite worthwhile for build-
ing a theoretical framework of packet-switched networks
and the Internet. So far, the Markovian queueing model
has been a powerful tool for modeling and evaluating
the target system. However, the above-mentioned data
transmission protocol is essentially a feedback system and
the Markovian model (including the queueing network
model) has no means to provide an effective way to eval-
uate the control mechanism of TCP. The model treated in
the current paper is our first one and its rather simple, but
we believe that our approach shown gives a framework for
treating the congestion control mechanism of TCP.

The primary goal of this paper is to investigate a
window-based flow control mechanism based on the con-
gestion avoidance mechanism of TCP Vegas by applying
a control theoretic approach. TCP Vegas always changes
its window size by one. Namely, TCP Vegas increases
or decreases its window size by one packet every one
round-trip time. Our analytic model, however, differs
from TCP Vegas in a point that the amount of window
size increase/decrease is specified by a control parame-
ter. In [6], fairness and stability of TCP Vegas have been
studied by an analytic approach, and an improvement in
TCP Vegas has been proposed. The key idea of their im-
provement is to get rid of a condition in the TCP Vegas’
congestion avoidance algorithm — a condition that win-
dow sizes of source hosts are unfairly stabilized. In this
paper, we adopt this idea, and the undesirable operation
of TCP Vegas is removed in our analytic model.

We first derive a condition that window sizes of TCP
connections and a queue length (i.e., the number of pack-
ets waiting in the router’s buffer) are stabilized in steady
state, which we call a stability condition. We then in-
vestigate an effect of system parameters (e.g., the num-
ber of active connections and the propagation delay) on
system stability through numerical examples. We next fo-
cus on a transient behavior of the system, and investigate
the ideal value of control parameters to achieve reasonable
transient performance while keeping system stable. We
also demonstrate that its performance can be dramatically

improved by dynamically adjusting its control parameters
based on our analytic results.

In [7-10], control theoretical approaches have been
taken to analyze various types of feedback-based conges-
tion control mechanisms. However, these studies have tar-
geted not window-based but rate-based congestion con-
trol mechanisms. The fundamental difference between
rate-based and window-based congestion control mecha-
nisms is in their packet transmission methods. Namely,
in window-based approaches, packet transmission is sus-
pended whenever the number of unacknowledged pack-
ets runs up to the current window size. On the con-
trary, in rate-based ones, packet transmission is performed
without discontinuation. Moreover, most congestion con-
trol mechanisms in the literature are defined only by lin-
ear equations [7, 9, 11-14]. In this paper, we analyze
more realistic and complicated congestion control mech-
anism; our analysis takes account of the number of pack-
ets queued in the router’s buffer that affects the round-trip
time. It is an intrinsic feature of the window-based con-
gestion control mechanism adopted in TCP Vegas, and
should not be neglected. Then, our analytic approach
leads to non-linear equations as shown below.

Organization of this paper is as follows. In Section 2,
we explain our window-based congestion control mech-
anism based on the congestion avoidance mechanism
of TCP Vegas followed by introduction of our analytic
model. In Sections 3 and 4, stability and transient anal-
yses are performed, and relation between control parame-
ters and its dynamics is investigated. In Section 5, several
simulation results are presented to validate our analysis.
Section 6 discusses applicability of our analysis to real
networks. In Section 7, we propose an adaptive control
mechanism for determining a control parameter, and show
that performance can be dramatically improved with this
mechanism. We discuss issues on the queue length con-
trol and the buffer dimensioning at the bottleneck router in
Section 8. In Section 9, we conclude this paper with few
remarks on buffer dimensioning of the bottleneck router,
follwed by discussion on future works.

2 Analytic Model

We first explain the congestion avoidance mechanism of
TCP Vegas. For detailed explanation, refer to [4]. In
TCP Vegas, each source host maintains τ , which is a min-
imum round-trip time obtained when the network is not
congested. That is, the minimum round-trip time τ cor-
responds to the sum of all propagation delays and pro-
cessing delays at the routers. Hereafter, we call the mini-
mum round-trip time, τ , the propagation delay for brevity.
The source host is allowed to emit packets of its current
window-size (denoted by w) per round-trip time. There-
fore, its effective throughput would be w/τ if there is
no congestion in the network. Each source host obtains
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Figure 1: Analytic model.

the actual round-trip time by measuring time duration be-
tween a transmission time of a packet and arrival of its
corresponding ACK packet. Let r be the actual round-trip
time measured at the source host, and w be the number
of packets the source host sent in the previous round-trip
time. Its actual throughput is given by w/r. TCP Vegas
then computes the difference between expected through-
put and actual throughput as

d =
w

τ
− w

r
.

TCP Vegas changes its window size, w, according to re-
lations among d and two threshold values, α and β. If
d is less than α, the window size is linearly increased by
one packet in the next round-trip time. If d is greater than
β, the window size is linearly decreased by one packet in
the next round-trip time. Otherwise, the window size is
unchanged.

In this paper, we model the above-mentioned conges-
tion control mechanism of TCP Vegas as follows. Fig-
ure 1 depicts our analytic model used throughout this pa-
per. The number N of source hosts are connected to cor-
responding destination hosts through a single bottleneck
router. TCP Vegas changes its window size once every
round-trip time. We therefore consider the system as a
discrete-time model, where each time slot corresponds to
the round-trip time. Note that since the round-trip time
changes as the network status changes, the length of one
slot is not fixed in our model.

Let wn(k) be the window size of the source host n (1 ≤
n ≤ N) at slot k. This indicates that the source host
n can inject wn(k) packets into the network during slot
k. We assume that each source host always has packets
to transmit so that the number wn(k) of packets are sent
at slot k. Let q(k) be the number of packets queued in
the router’s buffer at slot k, and L be the buffer size of the
router. At the router, all packets coming from source hosts
are processed in a FIFO (First-In First-Out) manner; that
is, all packets are first queued in the single buffer, and then
transmitted onto the output link in order. We denote the
bandwidth of the router (i.e., the processing speed of the
router or the bandwidth of the output link) by B. Note that

wn(k) (the window size), q(k) (the number of packets in
the router’s buffer), and L (the buffer size) are represented
in units of packets.

During a round-trip time, TCP Vegas allows the source
host consume the bandwidth being worth of its given win-
dow size. Provided that round-trip times of all connec-
tions are equal, the number of packets in the buffer at
slot k + 1, q(k + 1), is given by the following equation.

q(k + 1) = min(max(q(k) +
N∑

n=1

wn(k) − B r(k), 0), L)

where r(k) denotes the round-trip time at slot k.
TCP Vegas changes its window size based on the mea-

sured round-trip time. The difference between the ex-
pected throughput and the actual throughput d(k) is com-
puted as

d(k) =
wi(k)

τ
− wi(k)

r(k)
(1)

where τ is the round-trip time when there is no waiting
packets in the router’s buffer. The round-trip time r(k) is
determined by τ and the number of packets in the buffer;
Namely,

r(k) = τ +
q(k)
B

TCP Vegas linearly increases or decreases its window
size based on d(k). The window size of the source host n
at slot k + 1 is determined as

wn(k + 1) =




wn(k) + 1 if d(k) < α
wn(k) − 1 if d(k) > β
wn(k) otherwise

(2)

In the above equation, two threshold values (α and β) are
control parameters at the source host, which specify the
amount of excess packets the source host is permitted to
send in a round-trip time. However, we modify Eq. (2) as
follows.

wi(k + 1) = max(wn(k) + δ(γ − d(k)), 0) (3)

where δ is a control parameter that determines the amount
of increase/decrease of the window size in a round-trip
time. The purpose of introducing δ is not only for en-
abling application of a control theory, but also for improv-
ing transient performance as will be demonstrated in Sec-
tion 4. In [6], it has been reported that fairness among
connections cannot be satisfied when d(k) lies in [α, β].
In our analytic model, we therefore unify α and β in
Eq. (2) into γ as in Eq. (3). With this modification, fair-
ness among connections can be improved [6]. Intuitively,
γ controls the number of in-flight packets in the network
for each connection.
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When packet loss occurs in the network, the congestion
control mechanism of TCP Vegas halves its window size.
In our analysis, this behavior of TCP Vegas is not con-
sidered since packet loss never occurs as long as control
parameters satisfy the stability condition, which will be
derived in Section 3.

3 Stability Analysis

For simplicity, we assume that the initial window sizes of
all source hosts are equal, and that all source hosts change
their window sizes according to Eq. (3). The number of
packets in the router’s buffer at slot k + 1 is given by

q(k + 1) = min(max(q(k) + N w(k) − B r(k), 0), L)
= min(max(N w(k) − B τ, 0), L) (4)

where w(k) ≡ wn(k) for all n’s. Note that q(k +1) is not
dependent on q(k). This is because each time slot is de-
fined as a round-trip time in our analytic model. Namely,
in a window-based flow control mechanism, all packets
sent in slot k must be successfully transmitted at the be-
ginning of slot k + 1.

Let w∗, q∗, and d∗ be the fixed points of w(k), q(k),
and d(k) when k → ∞. By using Eqs. (1), (3), and (4),
w∗, q∗, and d∗ can be obtained as follows.

w∗ = τ

(
B + γN

N

)
(5)

q∗ = γNτ (6)

d∗ = γ (7)

Since w(k) is given by a non-linear equation, we lin-
earize it around the fixed point. Let x(k) be the difference
from the fixed point, defined by

x(k) =
[

w(k) − w∗

q(k) − q∗

]

x(k + 1) is given by

x(k + 1) = Ax(k) (8)

where

A =
[

1 − δ
τ + Bδ

(B+γN)τ − Bδ
N(B+γN)τ

N 0

]

In the system defined by Eqs. (1), (3), and (4), the fixed
point (w∗, q∗) is locally exponentially stable when the
roots of the characteristic equation si (i = 1, 2) satisfy
|si| < 1. Note that the characteristic equation is given by

D(s) ≡ |sI− A| = 0 (9)

Since the characteristic equation D(s) is quadratic, this
condition is equivalent to the following inequalities [15].

D(1) > 0
D(−1) > 0
|D(0)| < 1
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Figure 2: Stability region in the δ–N plane (B =
20 packet/ms, τ = 1 ms, γ = 3 packet)

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100
Up

pe
r B

ou
nd

 o
f δ

 
Bandwidth (packet/ms)

Condition 1
Condition 2

Figure 3: Stability region in the δ–N plane (N = 10,
τ = 1 ms, γ = 3 packet)

Hence, the fixed point of the system (w∗, q∗) is locally
exponentially stable if and only if the following inequali-
ties hold.

δ > 0 (10)
δ(B − γN)
(B + γN)τ

+ 2 > 0 (11)

Bδ

(B + γN)τ
< 1 (12)

Figure 2 shows a stability region in the δ–N
plane, where the bandwidth of the router B is set to
20 packet/ms, the propagation delay τ is to 1 ms, and the
desired number of in-flight packets γ is to 3. The number
of connections N is changed from 1 to 100 in this fig-
ure. The dotted line (labeled by “Condition 1”) and solid
line (labeled by “Condition 2”) correspond to Eqs. (11)
and (12), respectively. The system is stable if δ is lower
than both of these lines. As the number of connections
N reaches 20, δ can take a large value. However, after it
gets beyond 20, δ should be smaller as N increases. It is
shown in the figure that the network is always stable for
any N > 0 if δ is less than 1. However, from Eq. (3),
the congestion control mechanism is regarded as a static
feedback system with feedback gain δ from a control the-
oretical viewpoint. It means that if δ is set to be larger
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Figure 4: Stable behavior (δ = 2.4, B = 20 packet/ms,
N = 10, τ = 1 ms, γ = 3 packet)

(i.e., we choose high gain feedback), transient behaviors
of the system would be better while the stability would be
lost to some extent. Figure 2 shows such a tendency.

Another important factor for deciding δ is the router’s
bandwidth (or the router’s packet processing capability in
our modeling). Figure 3 shows a stability region when the
number of connections N is fixed at 10 while the router’s
bandwidth is changed from 1 to 100 packet/ms. In this
figure, other parameters are equal to those of Fig. 2. One
can find that an appropriate value of δ depends not only on
the number of connections but also on the router’s band-
width. Namely, δ must be carefully chosen where each
router might have a different capability. One suggestion is
that for safety, δ should be decided according to the router
with least bandwidth.

To see how the value of δ affects the system stability, we
next investigate dynamical behaviors of the system when
δ is either inside or outside of the stability region. From
Eqs. (10)–(12), the system is stable if 0 < δ < 2.5. In
Figs. 4 and 5, we show behaviors of the window size w(k)
and the number of packets q(k) when the network is either
stable (δ = 2.4) and unstable (δ = 2.6) for N = 10. Note
that initial values of the window size w(0) and the num-
ber of packets in the router’s buffer q(0) are set to 80%
of w∗ and q∗, respectively. Evolutions of w(k) and q(k)
are obtained by numerical computation using Eqs. (3) and
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Figure 5: Unstable behavior (δ = 2.6, B = 20 packet/ms,
N = 10, τ = 1 ms, γ = 3 packet)

(4). When δ is in the stability region as in Fig. 4, both
the window size and the number of packets in the router’s
buffer converge to the fixed point within 500 ms, indi-
cating stable operation of the system. However, if δ is
out of the stability region, they oscillate with large ampli-
tude as shown in Fig. 5, resulting in an unstable operation.
The maximum number of packets in the router’s buffer in
Fig. 5 is about 130 packets, whereas 50 packets in Fig. 4.
This would cause increase of packet transmission delays
due to longer waiting time in the router’s buffer. More-
over, it can be found that the queue length drastically os-
cillates in Fig. 5, and the router’s buffer periodically be-
comes empty.

This tendency becomes apparent as the propagation de-
lay increases. Shown in Figs. 6 and 7 are dynamical be-
haviors of the window size and the number of packets
when the propagation delay τ is set to 5 ms. The sta-
bility condition (Eqs. (10)–(12)) suggests that in this case
the system becomes stable if 0 < δ < 12.5. We thus set
δ = 12 (stable) and δ = 13 (unstable) in these cases. Fig-
ure 6 shows that the system slowly converges to the fixed
point since δ satisfies the stability condition. Slower con-
vergence than the case of τ = 1 ms (Fig. 4) is resulted
from less update frequency of the window size. That is,
since the window size is changed once per a round-trip
time, changes of the window size become slow as the
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Figure 6: Stable behavior (δ = 12, B = 20 packet/ms,
N = 10, τ = 5 ms, γ = 3 packet)

propagation delay increases. When δ is out of the stability
region as in Fig. 7, both of the window size and the num-
ber of packets in the buffer oscillate excessively. Because
of the system instability, the window size of the source
host happens to become zero for some time. In such a sit-
uation, packet transmission from the source host must be
kept waiting in the source host’s buffer. In the figure, it
can also be found that the maximum number of packets
in the buffer becomes quite large (i.e., 670 packets) com-
pared with the previous cases. This indicates that the great
amount of buffer must be provided at the router to prevent
packet losses.

From these numerical results, one can find that stabil-
ity of the system is heavily affected by choice of δ. In
particular, when the propagation delay is large, inappro-
priate configuration of δ easily causes unstable operation
of the network, and leads to terrible performance degrada-
tion. Moreover, convergence speed becomes slow as the
propagation delay increases. The system would be asymp-
totically stable as long as δ satisfies the stability condition
(Eqs. (10)–(12)). However, for realization of efficient net-
works, δ should be chosen with enough consideration on
its transient behavior. In Section 4, we further investi-
gate a selection method of control parameters by taking
account of tradeoff between system stability and conver-
gence speed.
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Figure 7: Unstable behavior (δ = 13, B = 20 packet/ms,
N = 10, τ = 5 ms, γ = 3 packet)

4 Transient Behavior

Transient behavior of the system defined by Eqs. (1), (3),
and (4) are determined by roots of its characteristic equa-
tion. Let si be the roots of the characteristic equation.
Then, si is given by

si =
1

2(B + γN)τ
(−δγN + Bτ + γNτ

±
√
−4Bδτ (B + γN) + (δγN − Bτ − γNτ)2

)

Convergence speed to the fixed point is determined by |si|
(i.e., vector length in Euclid space). For instance, the sys-
tem converges to the fixed point faster as |si| is closer to
zero. Therefore, δ should be chosen to minimize |s| de-
fined as

|s| ≡ max(|s1|, |s2|) (13)

which determines convergence speed in transient state.
Recall that for system stability, δ should satisfy the sta-
bility conditions given by Eqs. (10)–(12).

Figure 8 shows the relation between δ and |s|. The
bandwidth of the router B is set to 20 packet/ms, the con-
trol parameter γ is to 3 packet, and the propagation delay
τ is changed as 1, 3, 5, and 10 ms. It can be found from the
figure that there exists an ideal value of δ that minimizes
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Figure 11: Case of appropriate δ (B = 20 packet/ms,
N = 10, τ = 1 ms, γ = 3 packet, δ = 0.4)

|s| for given τ , but it can also be found that the ideal value
of δ changes considerably as τ changes. For example, the
optimal value can be numerically computed as δ = 0.397
for τ = 1 ms, while δ = 1.877 for τ = 5 ms. Figure 9
shows relation between δ and |s| for different numbers of
connections, i.e., N = 1, 5, 10, 20, and 50. In addition,
Fig. 10 shows relation between δ and |s| for different val-
ues of the router’s bandwidth, i.e., B = 10, 20, 30, and
50 packet/ms. These figures indicates the optimal value
of δ is not significantly affected by the number of connec-
tions or the router’s bandwidth.

In Figs. 11 and 12, we demonstrate how system perfor-
mance is improved by setting δ appropriately. Figure 11
corresponds to Fig. 4 except that δ is changed from 2.4 to
0.4. Similarly, Fig. 12 corresponds to Fig. 6 except δ be-
ing 1.9 not 1.2. Note that the stability condition is satisfied
in every case. These figures clearly exhibit importance of
choosing δ appropriately; that is, transient performance of
the system is dramatically improved while preserving sys-
tem stability. Comparison between Figs. 6 and 12 shows a
major reduction in the maximum number of packets (i.e.,
from 250 packets to 150 packets). Moreover, Fig. 6 shows
the system never reaches the fixed point within 1000 ms,
but the system is stabilized just in 50 ms by appropriate δ
as shown in Fig. 12.
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5 Simulation

In this section, we present several simulation results to
validate our analysis. The simulation model is same with
the analytic model shown in Fig. 1. We have implemented
the window-based flow control mechanism based on TCP
Vegas on the ns (Network Simulator) package [16]. The
packet size is fixed at 1,000 bytes, and the control parame-
ter δ is changed; 0.4 (optimal), 2.0 (stable), and 3.0 (unsta-
ble). For other control parameters, those of the numerical
example in Fig. 4 are used: i.e., the router’s bandwidth B
is set to 20 packet/ms, the number of connections N is 10,
the propagation delay τ is 1 ms, and the control parameter
γ is 3 packet.

In Figs. 13 and 14, we first show simulation results
for δ = 2.0 and δ = 3.0, each of which presents stable
and unstable behavior of the window-based flow control
mechanism based on TCP Vegas. These figures show dy-
namical behaviors of the window size of each connection
and the number of packets in the router’s buffer. One can
find that Fig. 13 (stable behavior) shows the slight oscil-
lation of both the window size and the number of packets
in the router’s buffer. This is caused by the disturbance
in measurement of the round-trip time (e.g., variation in
processing delays at both TCP and IP layers and timer
granularity of the source host). Thus, a smaller value of δ
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Figure 13: Stable behavior (δ = 2.0, B = 20 packet/ms,
N = 10, τ = 1 ms, γ = 3 packet).
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Figure 14: Unstable behavior (δ = 3.0, B =
20 packet/ms, N = 10, τ = 1 ms, γ = 3 packet).
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Figure 15: Case of appropriate δ (δ = 0.4, B =
20 packet/ms, N = 10, τ = 1 ms, γ = 3 packet).

would be appropriate for achieving a better stability. Fig-
ure 14 (unstable behavior) shows the drastic oscillation of
the window size and the number of packets in the buffer.
These figures suggest the validity of our stability analysis
presented in Section 3.

We next show the case of an appropriate value of δ in
Fig. 15, where δ is set to 0.4 as in Fig. 11. This figure
shows the more stable operation than Fig. 13. However,
it should be noted that fairness among connections is not
fully satisfied. This problem is caused by a drawback of
the window-based flow control mechanism of TCP Ve-
gas [17]. It is incapability to measure the propagation de-
lay exactly. The congestion avoidance mechanism of TCP
Vegas relies on the assumption that the propagation delay
(i.e., the round-trip time without any queueing delay at the
router) is known in advance. This assumption is invalid if
a router has a shared output buffer for all connections, or
if the offered traffic load is not very low. Therefore, the
inaccurate measurement of the propagation delay causes
unfairness among connections in most real networks. Re-
fer to [17] for more detailed discussion on this topic and
a solution using ECN (Explicit Congestion Notification)
mechanism.

6 Discussion on Applicability

We presented a control theoretic approach to the window-
based congestion control mechanism. However, our ap-
proach has several limitations as well as those of previ-
ous researches. That is, the analysis itself relies on sev-
eral assumptions such as an existence of the single bottle-
neck router, and identical propagation delays/initial win-
dow sizes of all connections. Also, the active number of
connections should be known a priori. Once those con-
ditions are satisfied, our approach exhibits the excellent
performance. However, we cannot expect it in the actual
situation.

In real networks, the number of active connections
and the actual propagation delay would change as time
changes. It sometimes causes inappropriate settings of δ
even if δ was once configured properly. Figure 8 showed
that the ideal value of δ mostly depends on the propaga-
tion delay. It is therefore possible to avoid degradation in
transient performance to a certain degree by determining
δ according to the largest propagation delay predicted in
advance. However, if δ is chosen in this way, the system
might be in an unstable operation as the propagation delay
unexpectedly becomes small.

One conservative approach is to choose δ for the small-
est propagation delay. In this case, the system never be-
comes unstable even when the propagation delay is heav-
ily changed (see Fig. 8). However, the transient perfor-
mance is considerably degraded as the propagation delay
increases. In the next section, we therefore propose an
adaptive control of δ by keeping track of changes in net-
work status, and show that such an adaptive control dra-
matically improves system performance.

7 Adaptive Control of δ

Our stability analysis in Section 3 and investigation on
transient behavior in Section 4 have shown that system
performance is significantly affected by the control pa-
rameter δ. For an efficient operation of the system, δ
must be chosen according to Eqs. (10)–(12) and Eq. (13).
Application of these equations, however, requires knowl-
edge on system parameters such as the number of active
connections and the propagation delay, which are rarely
known a priori in real networks. For instance, the number
of active connections varies as time goes, and the propa-
gation delay would be changed as packet routing changes.
Hence, it would be necessary to adapt the control param-
eter δ as the network status changes. Note that another
control parameter γ should be chosen to prevent buffer
overflow and underflow since γ is directly related to the
queue length at the router, which will be extensively dis-
cussed in Section 8.

In this section, we focus on the adaptive control of δ,
which determines the amount of increase/decrease of the

9



window size in a round-trip time. In what follows, we pro-
pose an adaptive control mechanism of the control param-
eter by keeping track of changes in the network status, fol-
lowed by its performance evaluation. Our objective here is
to improve the window-based congestion control mecha-
nism based on TCP Vegas with the least modification. An
adaptive control theory could be used for dynamically ad-
justing δ, but it beyonds the scope of this papper. The key
idea of the mechanism is to change δ at the source host
as network status changes. From the stability condition
(Eqs. (10)–(12)) and the ideal value of δ (Eq. (13)), it is
shown that δ must be determined from B (the bandwidth
of the router), N (the number of active connections), τ
(the propagation delay), and γ (control parameter). The
source host already knows γ and τ ; γ is a control param-
eter, and τ is always maintained for its congestion avoid-
ance mechanism in TCP Vegas. Therefore, the bandwidth
of the router B and the number of connections N should
be estimated to compute the ideal value of δ at the source
host. One approach to estimate the bandwidth of the bot-
tleneck router at the source host is to use a “packet pair”
method [1, 7, 18]. In this method, two adjacent packets
are used to probe the bottleneck bandwidth. More specif-
ically, the source host sends two packets into the network
leaving no space between them. When ACK packets for
them are returned, it then measures time duration between
these two ACK packets. Since the minimum duration of
two packets is determined by the bandwidth of the bottle-
neck router, the packet pair method conjectures the bottle-
neck bandwidth from this duration as noted earlier. The
packet pair method is applicable to our congestion con-
trol mechanism. It is known that the packet pair method
suffers from a certain amount of estimation errors when
the bottleneck router adopts other than fair queueing dis-
cipline, or when the network topology is asymmetric [19].
However, since the ideal value of δ is not sensitive to the
router’s bandwidth as shown in Fig. 10, rough estimation
of the router’s bandwidth is sufficient for the adaptive con-
trol of δ.

The number of active connections N can be estimated
from the window size wn(k) if the system is in steady
state. That is, the relation between the window size in
steady state and the number of connections is given by
Eq. (5). The estimated number of connections N∗ is there-
fore determined as

N∗ = max(
B∗ τ

w∗ − γτ
, 1) (14)

where B∗ is the estimated bandwidth of the bottleneck
router.

Our adaptive control mechanism recomputes the ideal
value of δ based on these estimated values (i.e., the num-
ber of connections N∗ and the bandwidth of the router
B∗) and our analytic results. More specifically, δ is re-
computed from the stability condition (Eqs. (10)–(12))
and the transient behavior (Eq.(13)) as soon as either the
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Figure 16: Effect of number of connections variation
(B = 20 packet/ms, τ = 5 ms, γ = 3 packet, δ = 1.9)

bandwidth of the router B∗, the number of connections
N∗, or the propagation delay τ , changes. For obtaining
the ideal value of δ, Eq. (13) must be minimized while
satisfying Eqs. (10)–(12). This can be numerically com-
puted by, for example, Brent’s method [20]. However,
such computation is rather expensive for the source host
to perform in real-time. Thus, frequency of parameter re-
computation may be limited by the processing power of
the source host. As we will show later, the performance is
greatly improved by applying our adaptive control mecha-
nism particularly when the propagation delay is changed.
Therefore, for practical use, the control parameter δ could
be updated only for change in the propagation delay.

We first investigate the influence of the number of con-
nections N . Note that the propagation delay τ is fixed.
We assume that the bandwidth of the router B is known
by source hosts. Figures 16 and 17 show dynamical be-
haviors of the window size and the number of packets in
the router’s buffer for τ = 5 ms when the adaptive control
of δ is either not used and used, respectively. In these fig-
ures, system parameters are equivalent to those of Fig. 12,
but the number of connections N is changed to 1 between
t = 300 ms and t = 700 ms. In case of no adaptive con-
trol of δ (Fig. 16), we set δ = 1.9 that is the ideal value
for N = 10. In case of the adaptive control in Fig. 17, δ
is numerically recomputed every 10 ms at the source host

10
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Figure 17: Effect of number of connections variation with
adaptive control (B = 20 packet/ms, τ = 5 ms, γ =
3 packet)

based on the estimated number of active connections (see
Eq. (14)). By comparing these figures, it can be found that
the performance gain resulted from the adaptive control of
δ is minor. In other words, the dynamical behavior of the
system is almost identical even with the adaptive control
of δ. This is because the ideal value of δ is not greatly
affected by change in the number of connections as seen
in Fig. 9.

When the propagation delay changes, however, sys-
tem performance is heavily degraded without our adaptive
control of δ. Figure 18 shows this case, where all parame-
ters are identical with those of Fig. 12, but the propagation
delay is changed to τ = 1 ms during t = 300–700 ms.
This figure indicates that when the propagation delay is
changed at t = 300 ms, it takes some time for the sys-
tem to become stabilized (about 100 ms in this case). This
is because δ = 1.9 is the ideal value for τ = 5 ms, but
not for τ = 1 ms. Namely, δ = 1.9 is inappropriate for
τ = 1 ms so that transient performance is not good. On
the other hand, when the propagation delay is changed to
τ = 5 ms again at t = 700 ms, the system immediately
converges to the fixed point. It is because δ = 1.9 is the
ideal value for τ = 5 ms.

We next show the case where δ is configured accord-
ing to the case of 1 ms propagation delay. In Fig. 19,
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Figure 18: Effect of propagation delay variation (B =
20 packet/ms, N = 10, γ = 3 packet, δ = 1.9)

only δ is changed to 0.4 from Fig. 18. It can be found
from this figure that transient performance is severely de-
graded when the propagation delay is changed to 5 ms at
t = 700 ms. This phenomenon is apparent by compar-
ing with Fig. 18. This can be explained as follows. The
window-based flow control mechanism changes its win-
dow size every one round-trip time. Thus, the window size
is changed more slowly as the propagation delay becomes
large. If the propagation delay is large and the control
parameter δ is inappropriate, convergence speed is quite
slow so that transient performance is severely degraded.

Finally, we show how transient performance can be im-
proved with the adaptive control of δ in Fig. 20. One can
find from the figure that by adaptively recomputing δ, al-
most ideal performance can be obtained regardless of the
values of the propagation delay. For instance, the system
is stabilized within 50 ms when the propagation delay is
changed from 5 ms to 1 ms at t = 300 ms. Also the system
quickly converges to the fixed point when the propagation
delay is changed to 5 ms at t = 700 ms.

8 Discussion on Buffer Dimension-
ing

The router’s buffer is one of the most important resources
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Figure 19: Effect of propagation delay variation (B =
20 packet/ms, N = 10, γ = 3 packet, δ = 0.4)

in the network. It is desirable to work the router with a
small buffer without compromising its performance. If
the buffer size is too large, not all the buffer is utilized.
On the contrary, if the buffer size is too small, many pack-
ets overflow the router’s buffer, leading to significant per-
formance degradation. The main objective of this section
is therefore to dimension the buffer size required at the
router, which achieves reasonable performance in terms
of packet loss probability and link utilization. The queue
length (i.e., the number of waiting packets in the buffer)
at the router is mainly dependent on the control parame-
ter γ since the objective of γ is to determine how many
in-flight packets are allowed in a round-trip time as indi-
cated by Eq. (7). Thus, γ affects the buffer occupancy in
steady state as shown in Eq. (6). It is therefore important
to properly choose γ to achieve high link utilization of the
outgoing link.

We first discuss an appropriate value of γ for achiev-
ing high link utilization. For this purpose, we derive
the minimum number of packets in the router’s buffer.
When the number of connections is decreased from N
to N ′ (N ′ < N ), the number of packets in the buffer
takes its minimum immediately after N is changed (see,
e.g., around t = 300 in Fig. 16). The minimum num-
ber of packets in the router’s buffer qmin is obtained from
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Figure 20: Effect of propagation delay variation with
adaptive control (B = 20 packet/ms, N = 10, γ =
3 packet)
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Eq. (17) as

qmin = min
{

max
[
N ′

(
τ

B + γN

N

)
− Bτ, 0

]
, L

}
(15)

As Eq. (15) indicates, the minimum number of pack-
ets queued in the buffer linearly increases for γ. To
achieve full link utilization, the minimum queue length
qmin should be greater than zero. Consequently, a con-
dition for achieving full link utilization is given from
Eq. (15) by the following inequality.

γ > B(
1

N ′ −
1
N

) (16)

We next focus on the maximum number of packets
queued in the router’s buffer. The number of packets in
the router’s buffer increases when the number of connec-
tions is increased (see, e.g., around t = 700 ms in Fig. 16).
In particular, it takes its maximum immediately after the
number of connections is changed. Let us consider a case
where the number of connections is suddenly increased
from N to N ′ (N ′ > N ) in steady state. Let qmax

be the maximum number of packets in this case. Using
Eqs. (2), (4) and (6), the maximum number of packets in
the router’s buffer is given by

qmax = min
{

max
[
N ′

(
τ

B + γN

N

)
− Bτ, 0

]
, L

}
(17)

From Eq. (17), it can be easily observed that the maxi-
mum queue length qmax is increased linearly for the prop-
agation delay τ and the number of connections N ′. To
prevent buffer overflow at the bottleneck router, the con-
trol parameter γ should be chosen such that Eq. (17) is less
than the buffer size L. In other words, Eq. (17) suggests
the required capacity for the buffer. Note that Eq. (17) is
for the worst-case; that is, all connections are assumed to
behave identically and synchronously. So the maximum
number of packets obtained in Eq. (17) is the upper-bound
of the actual one. Also note that the queue length of the
router increases when the propagation delay is changed as
in Fig. 18. The maximum queue length in this case can be
easily obtained with the same approach although results
are not included in this paper due space limitation.

Combining these observations, we summarize buffer
dimensioning of the bottleneck router for preventing
packet losses while achieving full link utilization. That
is, the buffer size of the bottleneck router L should satisfy

L > qmax

where qmax is a function of γ as shown in Eq. (17), and γ
should also satisfy Eq. (16).

In Figs. 21 and 22, we show dynamical behaviors of
the number of packets in the router’s buffer for cases of
appropriate and inappropriate settings of γ, respectively.
These figures use the following parameters: the router’s
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Figure 21: Case of appropriate γ (B = 20 packet/ms,
τ = 5 ms, γ = 3 packet, δ = 1.9
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Figure 22: Case of inappropriate γ (B = 20 packet/ms,
τ = 5 ms, γ = 3 packet, δ = 1.9

bandwidth B = 20 packet/ms, the propagation delay
τ = 5, and the control parameter δ = 1.9. The num-
ber of connections N is changed to 10 (t < 300), 15
(300 ≤ t < 500), 5 (500 ≤ t < 700), and 10 (t > 700).
From Eq. (17), the control parameter γ should be greater
than 2.67 for preventing buffer underflow in this case. We
therefore set γ = 3 (such that Eq. (16) is satisfied) in
Fig. 21 and γ = 2 (i.e., Eq. (16) is not satisfied) in Fig. 22.
One can find from these figures that the number of pack-
ets in the router’s buffer suddenly drops when the num-
ber of connections is decreased at t = 500 ms. It can
also be found that the router’s buffer in Fig. 22 becomes
empty, which results in low throughput. Using Eq. (17),
the maximum number of packets in the router’s buffer is
275 packets for the case of γ = 3. Figure 21 shows a good
agreement with this value. Note that the average number
of packets in Fig. 21 is much larger than that in Fig. 22.
This implies that the packet transmission delay becomes
large as γ increases. In other words, there is a trade-off
between throughput and packet transmission delay.

9 Conclusion

In this paper, we have focused on a window-based flow
control mechanism based on the congestion avoidance
mechanism of TCP Vegas, and have analyzed its stabil-
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ity and transient performance using a control theoretic
approach. We have first derived the stability condition,
which guarantees convergence of the window size and the
number of packets in the router’s buffer. Our stability
analysis has quantitatively shown that stability region of
the system’s feedback gain — determining the amount of
increase/decrease of the window size — depends on the
number of connections and the propagation delay. We
have next focused on transient behavior of the system,
and derived the ideal value of the feedback gain that min-
imizes convergence time to the fixed point. These anal-
yses suggest that control parameters such as a feedback
gain must be chosen carefully. In particular, fluctuations
of the number of active connections and the propagation
delay must be considered. We have proposed an adap-
tive control of the control parameter by keeping track of
changes in the network, and have shown that its effective-
ness through numerical examples. Our analytic results
gave much insight on the congestion control mechanism
of TCP. For instance, we have investigated the buffer di-
mensioning problem of the bottleneck router’s buffer. It
allows us to choose an appropriate buffer size of the bot-
tleneck router for avoiding buffer overflow and also for
preventing link under-utilization.

As a future work, we should extend our analysis to more
realistic networks. For example, interference between dif-
ferent types of traffic should be considered. Since both
of TCP and UDP traffic co-exist in real TCP/IP networks,
performance of a congestion control mechanism for TCP
traffic must be affected by existence of UDP traffic. In the
current paper, we have assumed that all connections have
identical propagation delays and identical initial window
sizes. In real TCP/IP networks, propagation delays of all
connections are not identical, so that dynamics of their
window sizes are not synchronized. In [21], we have ex-
tended our analysis to more generic network configura-
tions, where every connection is allowed to have a dif-
ferent propagation delay. The result there was that the
analytic results in this paper is still applicable to heteroge-
neous networks. Also note that the analytic result in [21]
is rather complex, so that it is difficult to perform such
computation at the source host in real-time. For practical
use, the analytic result in this paper is more suitable.
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